

Appendix D Historical Aerial Photographs

Greenwich Public School Boundary Approximate Investigation Area

Job No: 53033

Client: Pells Sullivan Meynink

Date: 01-Sep-2017 Version: Aerials

Drawn By: BC Checked By: SB

Scale 1:1,250

Coor. Sys. GDA 1994 MGA Zone 56

72 Greenwich Road

Greenwich, NSW

HISTORICAL AERIAL PHOTOGRAPH 1943

Date: 01-Sep-2017

Checked By: SB

10

20

Greenwich Public School Boundary
Approximate Investigation Area

Job No: 53033

Client: Pells Sullivan Meynink

Version: Aerials Date: 01-Sep-2017

Drawn By: BC Checked By: SB

Scale 1:1,250

0 10 20 metres

Coor. Sys. GDA 1994 MGA Zone 56

72 Greenwich Road Greenwich, NSW

HISTORICAL AERIAL PHOTOGRAPH 1961

Greenwich Public School Boundary

Approximate Investigation Area

Job No: 53033

Client: Pells Sullivan Meynink

Version: Aerials Date: 01-Sep-2017

Drawn By: BC Checked By: SB

Scale 1:1,250

Coor. Sys. GDA 1994 MGA Zone 56

72 Greenwich Road Greenwich, NSW

HISTORICAL AERIAL PHOTOGRAPH 1970

Greenwich Public School Boundary
Approximate Investigation Area

Job No: 53033

Client: Pells Sullivan Meynink

Version: Aerials Date: 01-Sep-2017

Drawn By: BC Checked By: SB

Scale 1:1,250

Coor. Sys. GDA 1994 MGA Zone 56

72 Greenwich Road Greenwich, NSW

HISTORICAL AERIAL PHOTOGRAPH 1980

Greenwich Public School Boundary

Approximate Investigation Area

Job No: 53033

Client: Pells Sullivan Meynink

Version: Aerials Date: 01-Sep-2017

Drawn By: BC Checked By: SB

Scale 1:1,250

Coor. Sys. GDA 1994 MGA Zone 56

72 Greenwich Road Greenwich, NSW

HISTORICAL AERIAL PHOTOGRAPH 1991

Greenwich Public School Boundary Approximate Investigation Area

Job No: 53033

Client: Pells Sullivan Meynink

Date: 01-Sep-2017 Version: Aerials

Drawn By: BC Checked By: SB

Scale 1:1,250

Coor. Sys. GDA 1994 MGA Zone 56

72 Greenwich Road Greenwich, NSW

HISTORICAL AERIAL PHOTOGRAPH 2002

Greenwich Public School Boundary
Approximate Investigation Area

Job No: 53033

Client: Pells Sullivan Meynink

Version: Aerials Date: 01-Sep-2017

Drawn By: BC Checked By: SB

Scale 1:1,250

Coor. Sys. GDA 1994 MGA Zone 56

72 Greenwich Road Greenwich, NSW

HISTORICAL AERIAL PHOTOGRAPH 2009

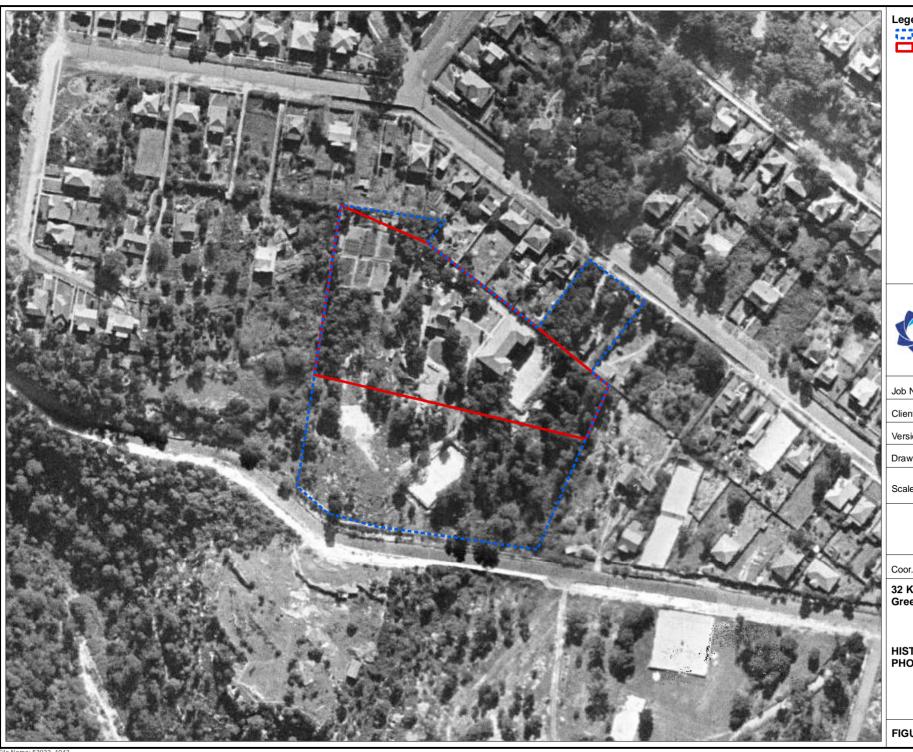
Greenwich Public School Boundary
Approximate Investigation Area

Job No: 53033

Client: Pells Sullivan Meynink

Date: 01-Sep-2017 Version: Aerials Checked By: SB

Drawn By: BC


Scale 1:1,250

Coor. Sys. GDA 1994 MGA Zone 56

72 Greenwich Road Greenwich, NSW

AERIAL PHOTOGRAPH 2017

Greenwich Public School Boundary Approximate Investigation Area

Job No: 53033

Client: Pells Sullivan Meynink

Date: 01-Sep-2017 Version: Aerials

Drawn By: BC Checked By: SB

Scale 1:2,000

Coor. Sys. GDA 1994 MGA Zone 56

32 Kingslangley Road Greenwich, NSW

HISTORICAL AERIAL PHOTOGRAPH 1943

Greenwich Public School Boundary
Approximate Investigation Area

Job No: 53033

Client: Pells Sullivan Meynink

Version: Aerials Date: 01-Sep-2017

Drawn By: BC

Checked By: SB

Scale 1:2,000

Coor. Sys. GDA 1994 MGA Zone 56

32 Kingslangley Road Greenwich, NSW

HISTORICAL AERIAL PHOTOGRAPH 1961

Greenwich Public School Boundary
Approximate Investigation Area

Job No: 53033

Client: Pells Sullivan Meynink

Version: Aerials Date: 01-Sep-2017

Drawn By: BC Checked By: SB

Scale 1:2,000

Coor. Sys. GDA 1994 MGA Zone 56

32 Kingslangley Road Greenwich, NSW

HISTORICAL AERIAL PHOTOGRAPH 1970

Greenwich Public School Boundary
Approximate Investigation Area

Job No: 53033

Client: Pells Sullivan Meynink

Version: Aerials Date: 01-Sep-2017

Drawn By: BC

Checked By: SB

Scale 1:2,000

metres

Coor. Sys. GDA 1994 MGA Zone 56

32 Kingslangley Road Greenwich, NSW

HISTORICAL AERIAL PHOTOGRAPH 1986

Greenwich Public School Boundary
Approximate Investigation Area

Job No: 53033

Client: Pells Sullivan Meynink

Version: Aerials Date: 01-Sep-2017

Drawn By: BC Checked By: SB

Scale 1:2,000

0 20 40 metres

Coor. Sys. GDA 1994 MGA Zone 56

32 Kingslangley Road Greenwich, NSW

HISTORICAL AERIAL PHOTOGRAPH 1991

Greenwich Public School Boundary Approximate Investigation Area

Job No: 53033

Client: Pells Sullivan Meynink

Date: 01-Sep-2017 Version: Aerials

Drawn By: BC Checked By: SB

Scale 1:2,000

Coor. Sys. GDA 1994 MGA Zone 56

32 Kingslangley Road Greenwich, NSW

HISTORICAL AERIAL PHOTOGRAPH 2002

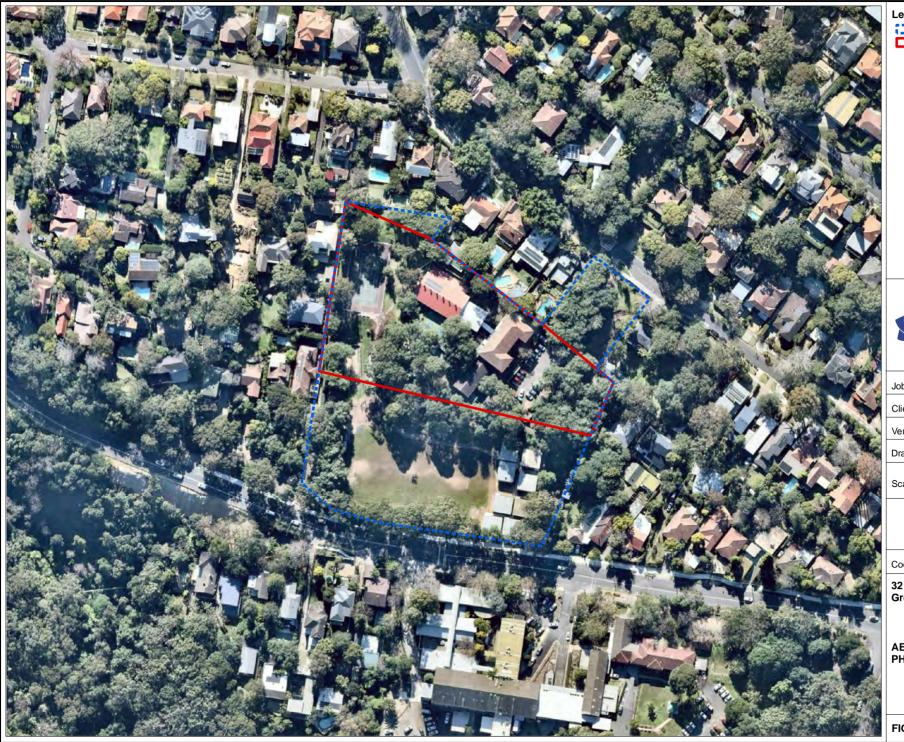
Greenwich Public School Boundary
Approximate Investigation Area

Job No: 53033

Client: Pells Sullivan Meynink

Version: Aerials Date: 01-Sep-2017

Drawn By: BC Checked By: SB


Scale 1:2,000

Coor. Sys. GDA 1994 MGA Zone 56

32 Kingslangley Road Greenwich, NSW

HISTORICAL AERIAL PHOTOGRAPH 2009

Greenwich Public School Boundary
Approximate Investigation Area

Job No: 53033

Client: Pells Sullivan Meynink

Version: Aerials Date: 01-Sep-2017

Drawn By: BC Checked By: SB

Scale 1:2,000

Coor. Sys. GDA 1994 MGA Zone 56

32 Kingslangley Road Greenwich, NSW

AERIAL PHOTOGRAPH 2017

Appendix E Land Titles

ABN: 42 166 543 255 Ph: 02 9099 7400 Fax: 02 9232 7141 Level 14, 135 King Street, Sydney 2000 GPO Box 4103 Sydney NSW 2001 DX 967 Sydney

Summary of Owners Report

<u>LPI</u>

<u>Address: 32 Kings Langley Road, Greenwich</u>

Sydney

Description: Lot 1 D.P. 746491

As regards the part tinted pink on attached Cadastre

Date of Acquisition and term held	Registered Proprietor(s) & Occupations where available	Reference to Title at Acquisition and sale
24.05.1906 (1906 to 1917)	Elizabeth Hume (Widow) Now Elizabeth Armstrong (Married Woman)	Vol 1695 Fol 79
05.11.1917 (1917 to 1931)	Ellen Colville (Married Woman)	Vol 1695 Fol 79
15.04.1931 (1931 to 1970)	Robert Campbell (Motor Mechanic)	Vol 1695 Fol 79
16.10.1970 (1970 to 1981)	Ruby Campbell (Widow) (Section 93 Application not investigated)	Vol 1695 Fol 79
30.11.1981 (1981 to Date)	# Her Most Gracious Majesty Queen Elizabeth the Second Now # Minister for Education	Vol 1695 Fol 79 Now 1/746491

Denotes Current Registered Proprietor

Easements & Leases: -NIL

As regards the part tinted green on attached Cadastre

Date of Acquisition and term held	Registered Proprietor(s) & Occupations where available	Reference to Title at Acquisition and sale
28.11.1900 (1900 to 1936)	Norman Leslie Gilfillan (Gentleman)	Vol 1339 Fol 122
07.05.1936 (1936 to 1936)	Ann Gilfillan (Widow) (Application by Transmission not investigated)	Vol 1339 Fol 122
31.10.1936 (1936 to 1942)	Charles Thomas Richardson (Public Accountant) John Webb Alexander (Retired Grazier) Dudley Francis John Harricks (Engineer)	Vol 1339 Fol 122
19.10.1942 (1942 to 1942)	John Webb Alexander (Retired Grazier) Dudley Francis John Harricks (Engineer)	Vol 1339 Fol 122
19.10.1942 (1942 to 1950)	Hillcrest School	Vol 1339 Fol 122
24.02.1950 (1950 to Date)	# The Minister for Public Instruction (Resumed under the Public Works Act, 1912 for a Public School) Now # Minister for Education	Vol 1339 Fol 122 Now 1/746491

Denotes Current Registered Proprietor

Easements & Leases: -NIL

ABN: 42 166 543 255 Ph: 02 9099 7400 Fax: 02 9232 7141 Level 14, 135 King Street, Sydney 2000 GPO Box 4103 Sydney NSW 2001 DX 967 Sydney

As regards the part tinted blue on attached Cadastre

Date of Acquisition and term held	Registered Proprietor(s) & Occupations where available	Reference to Title at Acquisition and sale
04.01.1901 (1901 to 1936)	Norman Leslie Gilfillan (Gentleman)	Vol 1341 Fol 70
07.05.1936 (1936 to 1936)	Ann Gilfillan (Widow)	Vol 1341 Fol 70
31.10.1936 (1936 to 1942)	Charles Thomas Richardson (Public Accountant) John Webb Alexander (Retired Grazier) Dudley Francis John Harricks (Engineer)	Vol 1341 Fol 70
19.10.1942 (1942 to 1942)	John Webb Alexander (Retired Grazier) Dudley Francis John Harricks (Engineer)	Vol 1341 Fol 70
19.10.1942 (1942 to 1950)	Hillcrest School	Vol 1341 Fol 70
24.02.1950 (1950 to Date)	# The Minister for Public Instruction (Resumed under the Public Works Act, 1912 for a Public School) Now # Minister for Education	Vol 1341 Fol 70 Now 1/746491

Denotes Current Registered Proprietor

Easements: -

• 19.09.1995 (D.P. 853103) - Easement to Drain Water 1.2 wide

Leases: -NIL

Yours Sincerely James McDonnell 9 August 2017

Locality: GREENWICH NSW Information

Cadastral Records Enquiry Report

Parish: WILLOUGHBY

Identified Parcel: Lot 1 DP 746491

County: CUMBERLAND

Requested Parcel: Lot 1 DP 746491 LGA: LANE COVE

Report Generated 1:13:54 PM, 9 August, 2017 Copyright © Land and Property Information ABN: 23 519 493 925 7323 P 6 DP 18180 18180 DP 917975 DP 340 Db 138/140 DP 557578 DP 220804 00 DP 4697 DP **N** D 584155 DP 31141 DP 369368 Property Information Map Projection DP 346798 ယ STANDISH ST 0 E DP 21662 \succ DP 376014 0 DP 21662 DP 376013 m DP 747463 $\frac{\omega}{2}$ This information is provided as a searching aid only. While every endeavour is made to ensure the current cadastral pattern is accurately reflected, the Registrar General cannot guarantee the information provided. For all ACTIVITY PRIOR to SEPT 2002 you must refer to the RGs Charting and Reference Maps. Y MGA250 DP 4697 2 50 ne 56 6 DP 746491 DP 853103 3 9 8 3 cy' S N 6 Aplip A N Ŝ 80 Od A Sound South 15 DP/551980 858 V 8 17 RIVER RD 6 # Op 103040 0) 70 Ø 9 DP 957741 8.5 17 25.5 34 Metres B Þ DP 656213 00/0704 ထ ζŀ OP 301495 0) Ź CHACCEIN Cy N շ DP 455784 Sp 45451 V 0 0 ∿ 8

Co

Page 1 of 3

NSW Information

DP

18180

Requested Parcel: Lot 1 DP 746491 Cadastral Records Enquiry Report

Parish: WILLOUGHBY

Identified Parcel: Lot 1 DP 746491

OP 301495

1

Sp 45451

Ź

OSMOGIM

0

Locality : GREENWICH DP 18180/ 7323 DP 340 DP 917975 pright (c) Land (S) I dO DP 557578 ထ 믕 DP 4697 DP 2 D 584155 2 DP 31141 DP 369368 DP 346798 ယ STANDISH ST C E DP 21662 \succ 0 DP 376014 DP 21662 LGA: LANE COVE DP 376013 m DP 747463 3 A DP 4697 MIUNICIPAL 0 DP 746491 DP 853103 3 SASS 9 0) cy' 5 B 6 Woley O NA Ś O La Company 15 DP 551980 V 85°E 8 7 0 -1 County: CUMBERLAND Op 103040 0) 100 See 10 0 DP 957741 8 Þ DP 656213 DP/0704 ₯

0

8

Cy

0

N

Ç

6

Report Generated 1:13:54 PM, 9 August, 2017
Copyright © Land and Property Information ABN: 23 519 493 925

ng Map Projection

MGA950

ne 56

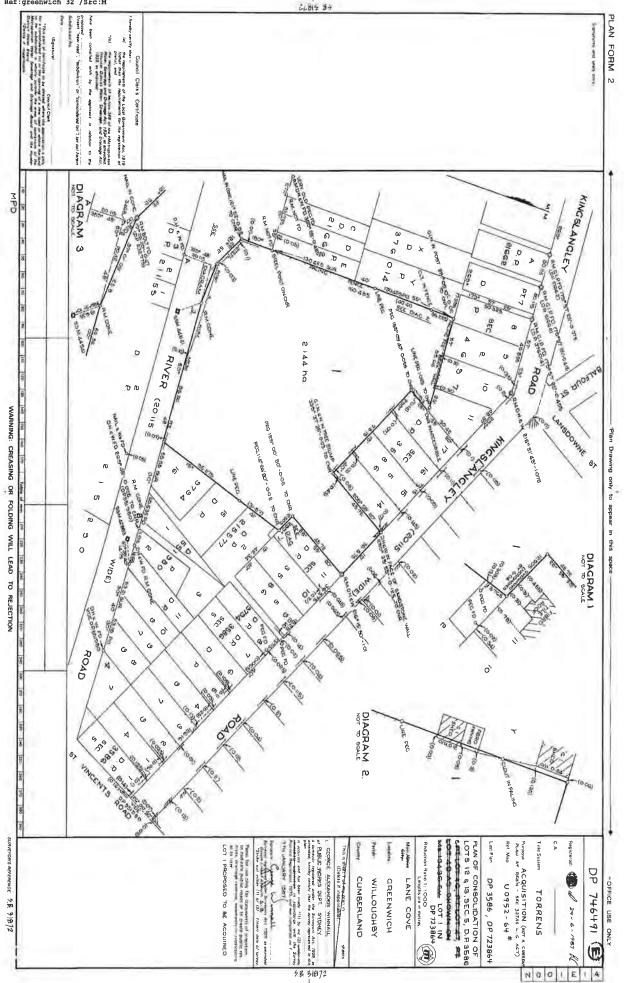
50

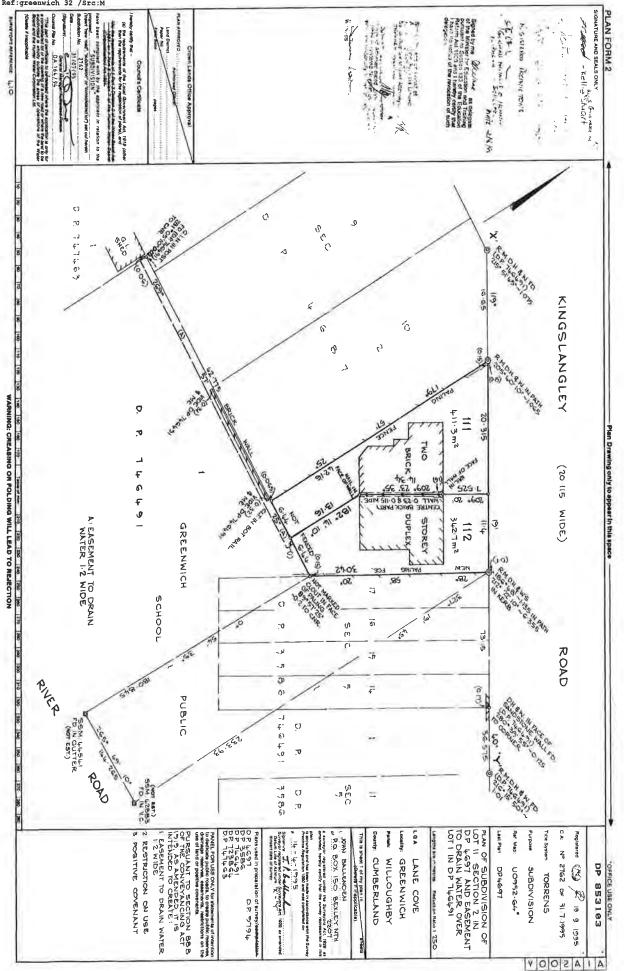
This information is provided as a searching aid only. While every endeavour is made to ensure the current cadastral pattern is accurately reflected, the Registrar General cannot guarantee the information provided. For all ACTIVITY PRIOR to SEPT 2002 you must refer to the RGs Charting and Reference Maps.

S

RIVER RD

∞


N


Ç

8.5 17 25.5 34 Metres

DP 455784

Page 1 of 3

land as is private property is hereby resumed, under the Public Works Act, 1912, as amended, for the following public purpose, namely, a Public School at BERRIMA, and that the said land is vested in the Minister of Public Instruction as Constructing Authority on behalf of His Majesty the King.

Dated this fifteenth day of February, one thousand nine handred and fifty.

J. NORTHCOTT, Governor,

By His Excellency's Command.

R. J. HEFFRON, Minister of Public Instruction.

THE SCHEDULE.

All that piece or parcel of land situate in the Shire of Mittagong, town of Berrima, parish of Berrima, county of Camden, and State of New South Wales, being allotments 7, 8 and 9 of section 1,—having an area of 1 nere 1 rood 31 perches or thereabouts, and said to be in the possession of trustees of the will of Robert Green.

Also, all that piece or parcel of land situate as above, being allotment 10 of section 1,—having an area of 1 rood 36 perches or thereabouts, and said to be in the possession of John Geoffrey Schott. (3125)

NOTIFICATION OF RESUMPTION OF LAND UNDER THE PUBLIC WORKS ACT, 1912, AS AMENDED.

ITE PUBLIC WORKS ACT, 1912, AS AMENDED.

IT is hereby notified and declared by His Excellency the Governor, netting with the advice of the Exceutive Council, that so much of the land described in the Schedule hereto as is Crown land is hereby appropriated, and so much of the said land as is private property is hereby resumed, under the Public Works Act, 1912, as amended, for the following public purpose, namely, a Public School at GREENWICH, and that the said land is vested in the Minister of Public Instruction as Constructing Authority on behalf of His Majesty the King.

Dated this twenty-second day of February, one thousand nine hundred and fifty.

J. NORTHCOTT, Governor, By His Excellency's Command, GEO. WEIR, for Minister of Public Instruction.

THE SCHEDULE.

THE SCHEPULE.

All that piece or parcel of land situate in the Municipality of lane Cove, parish of Willoughby, county of Cumberland, and State of New South Wales, being lot 13 of section 5 in deposited plan 3,686,—having an area of 33 perches or therenbouts, and said to be in the possession of Hillerest School.

Also, all that piece or parcel of land situate as above, being part of lots 46, 47 and 48 of section E of a subdivision of portion 322 Ph., and also being the whole of the land comprised in Certificate of Title, volume 1,341, folio 79,—having an area of 4 acres 3 roods 23 pershes or thereabouts, and said to be in the possession of Hillerest School.

(3122)

PUBLIC INSTRUCTION ACT OF 1880, AS AMENDED. NOTIFICATION OF RESCISSION OF RESUMPTION

Rescission of Resumption of Land acquired for High School and Technical College purposes at Casino, New South Wales.

Technical College purposes at Casino, New South Wales. IN pursuance of the provisions contained in subsection (1) of section 4A of the Public Instruction Act of 1880, as amended, His Excellency the Governor, with the advice of the Executive Council, DOTH by this notification RESCIND the notification of resumption of land under the Public Works Act, 1912, as amended, dated the 15th January, 1947, and published in the Government Gazette No. 16 of the 24th January, 1947, in so far as such notification relates to the land described in the Schedule bereunder.

THE SCHEDULE.

All that piece or parcel of land situate in the Municipality of Casino, parish of South Casino, county of Richmond, and State of New South Wales, being allotment 11 of section 37 of the town of Casino,—having an area of 1 rood 304 perches or thereabouts.

Dated at Sydney, this fifteenth day of February, 1950.

J. NORTHCOTT, Governor.

By His Excellency's Command, (8124) R. J. HEFFRON, Minister of Public Instruction. NOTIFICATION OF APPROPRIATION AND RESUMP-TION OF LAND FOR RAILWAY PURPOSES UNDER THE MINISTRY OF TRANSPORT ACT, 1932, AND THE PUBLIC WORKS ACT, 1912, AS RESPECTIVELY AMENDED.

WHEREAS the Commissioner for Railway is desirious of acquiring the land referred to in the Schedule hereto for the purpose of maintaining the traffic on the existing line of railway between Central and Tempe, by the provision of improved access in the vicinity of Chalmers-street Railway Station, deemed to be requisite and convenient for the use of the railways, and whereas the said land is, in my opinion, required for earrying out the said work: Now, therefore, I, the Governor, with the advice of the Executive Council, in pursuance of the Ministry of Transport Act, 1932, and the Public Works Act, 1912, as respectively amended, do hereby direct that the said work shall be carried out by the Commissioner for Railways, as the Constructing Authority; and I do declare by this notification to be published in the Government Gazette and in one or more mewspapers published or circulated in the Police District wherein the said hand is situated that the land referred to in the Schedule hereto is hereby appropriated and resumed for the purpose hereinbefore referred to.

SCHEDULE.

All that parcel of land situate in the City of Sydney, parish of Alexandria, county of Cumberland and State of New South Wales being part of lot 12 section 2 of Central Railway Station lands and forming also part of the land comprised in Certificates of Title registered volume 4319 folios 188 and 189 Commencing at the western corner of the land comprised in the aforesaid Certificates of Title and bounded thence by part of the south-eastern side of Raadle-lane bearing 33 certees 5 minutes 17 seconds 12 feet \(\frac{1}{2}\) inches hearing 121 degrees 44 minutes 40 seconds 38 feet \(\frac{1}{2}\) inches and 88 degrees 34 minutes 40 seconds 11 feet \(\frac{1}{2}\) inch thence by part of the western side of Elizabeth-stree bearing 178 degrees 28 minutes 27 seconds 23 feet 4\(\frac{1}{2}\) inches and thence by the south-western boundary of land comprised in the said Certificates of Title bearing 302 degrees 56 minutes 50 seconds 60 feet 10\(\frac{1}{2}\) inches to the point of commencement being 24 nerdes in area and said to be vested in Motor Wheel and Tyre Co. Ltd.

Signed at Sydney, this fifteenth day of February, 1950. J. NORTHCOTT, Governor,

> By His Excellency's Command, M. O'SULLIVAN, Minister for Transport.

(3063)GOD SAVE THE KING!

(3028)Department of Public Health. Sydney, 17th February, 1950.

PUBLIC HEALTH ACT, 1902-1944, SECTION 55, AREA No. 589.

UNIEALTHY Building Land in the vicinity of Marks Point, Lake Macquarie Shire, Parish of Kahibah, County of Northumberland.

THE Board of Health have reported that, after due inquiry, they are of the opinion that it would be prejudicial to health if certain land, situated on the shore of Lake Macquarle and Village Bay, described in Schedule hereunder, were built upon in its present condition.

The Board of Health have further reported that in order to render such land fit to be built upon, it is necessary that:—

- (a) The land be raised with clean sand or soil at the shore of Village Bay and Lake Macquarie to a height of 5 feet 9 inches above Newcastle sewerage datum, rising thence on the even grade to a height above that datum of 7 feet at the property lines at Marks Point rand.
- (b) The floors of any buildings which may be erected thereon be laid on joists, the undersides of which shall be not less than 18 inches above the surface of the land when raised.
 (c) The whole of the work be done to the satisfaction of the Board of Health.

Now, therefore, in pursuance of the power and authority vested in me by section 55 (1) of the Public Health Act, 1902-1944, I hereby declare that such land shall not be built upon until the measures above referred to, which are also specified in a document deposited in the office of the Local Authority (The Council of the Shire of Lake Macquarie), and open to the inspection of any person, have been complied with, or until this notice has been revoked by me.

C. A. KELLY, Minister for Health.

Historical Title

Information Provided Through John McLaren & Co (NSW) Ph. 02 9231 4872 Fax. 02 9233 6557

LAND AND PROPERTY INFORMATION NEW SOUTH WALES - HISTORICAL SEARCH

SEARCH DATE

7/8/2017 1:12PM

FOLIO: 12/5/3586

First Title(s): SEE PRIOR TITLE(S)
Prior Title(s): VOL 1695 FOL 79

Recorded 16/9/1989	Number	Type of Instrument TITLE AUTOMATION PROJECT	C.T. Issue LOT RECORDED FOLIO NOT CREATED
20/12/1990		CONVERTED TO COMPUTER FOLIO	FOLIO CREATED CT NOT ISSUED
24/4/1991	Z621 44 1	DEPARTMENTAL DEALING	FOLIO CANCELLED

Historical Title

Information Provided Through John McLaren & Co (NSW) Ph. 02 9231 4872 Fax. 02 9233 6557

LAND AND PROPERTY INFORMATION NEW SOUTH WALES - HISTORICAL SEARCH

SEARCH DATE

7/8/2017 1:12PM

FOLIO: 13/5/3586

First Title(s): SEE PRIOR TITLE(S)
Prior Title(s): VOL 1339 FOL 122

Recorded 16/9/1989	Number	Type of Instrument TITLE AUTOMATION PROJECT	C.T. Issue LOT RECORDED FOLIO NOT CREATED
5/12/1990		CONVERTED TO COMPUTER FOLIO	FOLIO CREATED CT NOT ISSUED
24/4/1991	Z621441	DEPARTMENTAL DEALING	FOLIO CANCELLED

Historical Title

Information Provided Through John McLaren & Co (NSW) Ph. 02 9231 4872 Fax. 02 9233 6557

LAND AND PROPERTY INFORMATION NEW SOUTH WALES - HISTORICAL SEARCH

SEARCH DATE

7/8/2017 1:05PM

FOLIO: 1/746491

First Title(s): OLD SYSTEM

Recorded 30/6/1987	Number DP746491	Type of Instrument DEPOSITED PLAN	C.T. Issue LOT RECORDED FOLIO NOT CREATED
24/4/1991	Z582848	APPLICATION FOR ISSUE OF CERTIFICATE OF TITLE	FOLIO CREATED EDITION 1
19/9/1995	DP853103	DEPOSITED PLAN	EDITION 2

Title Search

Information Provided Through John McLaren & Co (NSW) Ph. 02 9231 4872 Fax. 02 9233 6557

LAND AND PROPERTY INFORMATION NEW SOUTH WALES - TITLE SEARCH

FOLIO: 1/746491

SEARCH DATE	TIME	EDITION NO	DATE
9/8/2017	12:19 PM	2	19/9/1995

LAND

LOT 1 IN DEPOSITED PLAN 746491 AT GREENWICH LOCAL GOVERNMENT AREA LANE COVE PARISH OF WILLOUGHBY COUNTY OF CUMBERLAND TITLE DIAGRAM DP746491

FIRST SCHEDULE

MINISTER FOR EDUCATION

SECOND SCHEDULE (3 NOTIFICATIONS)

- RESERVATIONS AND CONDITIONS IN THE CROWN GRANT (S) 1 2 F250123 LAND EXCLUDES MINERALS (S.141 PUBLIC WORKS ACT,
- 1912)
- DP853103 EASEMENT TO DRAIN WATER 1.2 WIDE AFFECTING THE PART(S) SHOWN SO BURDENED IN DP853103

NOTATIONS

NOTE: THE CERTIFICATE OF TITLE FOR THIS FOLIO OF THE REGISTER DOES NOT INCLUDE SECURITY FEATURES INCLUDED ON COMPUTERISED CERTIFICATES OF TITLE ISSUED FROM 4TH JANUARY, 2004. IT IS RECOMMENDED THAT STRINGENT PROCESSES ARE ADOPTED IN VERIFYING THE IDENTITY OF THE PERSON(S) CLAIMING A RIGHT TO DEAL WITH THE LAND COMPRISED IN THIS FOLIO.

UNREGISTERED DEALINGS: NIL

*** END OF SEARCH ***

greenwich 32

PRINTED ON 9/8/2017

^{*} Any entries preceded by an asterisk do not appear on the current edition of the Certificate of Title. Warning: the information appearing under notations has not been formally recorded in the Register. InfoTrack an approved NSW Information Broker hereby certifies that the information contained in this document has been provided electronically by the Registrar General in accordance with Section 96B(2) of the Real Property Act 1900.

ABN: 42 166 543 255 Ph: 02 9099 7400 Fax: 02 9232 7141 Level 14, 135 King Street, Sydney 2000 GPO Box 4103 Sydney NSW 2001 DX 967 Sydney

Summary of Owners Report

<u>LPI</u> <u>Sydney</u>

Address: 70A Greenwich Road, Greenwich

Description: Lot A D.P. 930344

Date of Acquisition and term held	Registered Proprietor(s) & Occupations where available	Reference to Title at Acquisition and sale
13.11.1907 (1907 to Date)	# His Most Gracious Majesty King Edward the Seventh (For the Purposes of the Public Instruction Act of 1880) Now # Minister of Education	Vol 1829 Fol 21 Now A/930344

Denotes Current Registered Proprietor

Easements & Leases: -NIL

Yours Sincerely James McDonnell 9 August 2017

Cadastral Records Enquiry Report

LGA: LANE COVE Requested Parcel: Lot A DP 930344

Parish: WILLOUGHBY

Identified Parcel: Lot A DP 930344

County: CUMBERLAND

	62 61 13 14 13 86 CARTO DE	MILIAM ST
Copyright (r) band	62 67 60 59 58 57 56 11 10 9 CARTOTIALANE 4	36 37
and Property/Inform	8 56 55 54 53 52 51 1 6 5 4	
nation. Map Project	100 100 100 100 100 100 100 100 100 100	3 2
Copyright (p) band and Property Information. Map Profession, MGA Zone 56	100 DP 1053673	1 / 9
101	HISHOLMST PST 930301 PP 93	00 00 00 00 00 00 00 00 00 00 00 00 00
5	DP 32 061341 12375-1	DP 656208
JF 16669	DP 16669 B 20 832	2 00 1533
1	53 by 2 by	00 00 50
11 20 8.5	DP 16669 OP 1532 44 GLENVIEW ST	32 / 32
5 17 25.5 34 Metres	DP 173148 DP 173148	37 4
38	DP 808365 DP 828512 DP 832435 (2) 2020 dO	DP 1054

00

DP 80

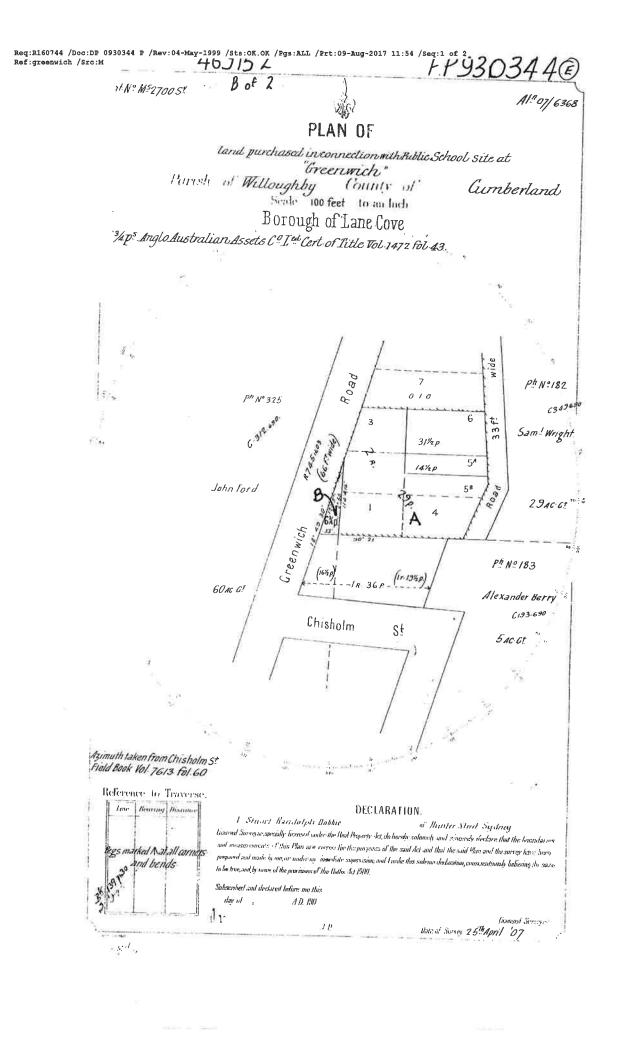
6

DP 832435

9⊁60£9 dQ

Report Generated 12:13:21 PM, 9 August, 2017 Copyright © Land and Property Information ABN: 23 519 493 925

This information is provided as a searching aid only. While every endeavour is made to ensure the current cadastral pattern is accurately reflected, the Registrar General cannot guarantee the information provided. For all ACTIVITY PRIOR to SEPT 2002 you must refer to the RGs Charting and Reference Maps.


Page 1 of 3

ii Narwich Chambers Hunier Street ed since an especially hornered ander the Hood Progress but distinctin subaye by and so wearth obesides that the horsed are semust meants of this Plan are ever if he the corpuses of the soul let and that the soul Plan and those very have been prepared and usada by one or names as monostate superscome and I make this subsuce to transace conscient out by the same to be tone, and by victue of the provisions of the Oother 3 (200). Subscribed and declared before me this

day if 4.D. 190

ked Matall corners

Inwised Serveyor Date of Stare 25 #April 07

Historical Title

Information Provided Through John McLaren & Co (NSW) Ph. 02 9231 4872 Fax. 02 9233 6557

LAND AND PROPERTY INFORMATION NEW SOUTH WALES - HISTORICAL SEARCH

SEARCH DATE

7/8/2017 1:05PM

FOLIO: A/930344

First Title(s): OLD SYSTEM

Prior Title(s): VOL 1829 FOL 21

Recorded	Number	Type of Instrument	C.T. Issue
29/7/1989		TITLE AUTOMATION PROJECT	LOT RECORDED FOLIO NOT CREATED
29/7/1991	DP930344	DEPOSITED PLAN	FOLIO CREATED CT NOT ISSUED
30/11/1993	1833089	APPLICATION	EDITION 1
16/1/2013	AH491580	DEPARTMENTAL DEALING	

InfoTrack An Approved LPI NSW Information Broker

Title Search

Information Provided Through John McLaren & Co (NSW) Ph. 02 9231 4872 Fax. 02 9233 6557

LAND AND PROPERTY INFORMATION NEW SOUTH WALES - TITLE SEARCH

FOLIO: A/930344

 SEARCH DATE
 TIME
 EDITION NO
 DATE

 9/8/2017
 11:54 AM
 1
 30/11/1993

LAND

LOT A IN DEPOSITED PLAN 930344

AT GREENWICH

LOCAL GOVERNMENT AREA LANE COVE

PARISH OF WILLOUGHBY COUNTY OF CUMBERLAND

TITLE DIAGRAM DP930344

FIRST SCHEDULE

MINISTER FOR EDUCATION

(AP 1833089)

SECOND SCHEDULE (2 NOTIFICATIONS)

- 1 LAND EXCLUDES MINERALS AND IS SUBJECT TO RESERVATIONS AND CONDITIONS IN FAVOUR OF THE CROWN SEE CROWN GRANT(S)
- * 2 LAND EXCLUDES LAND IN RESUMPTION L244065

NOTATIONS

NOTE: THE CERTIFICATE OF TITLE FOR THIS FOLIO OF THE REGISTER DOES NOT INCLUDE SECURITY FEATURES INCLUDED ON COMPUTERISED CERTIFICATES OF TITLE ISSUED FROM 4TH JANUARY, 2004. IT IS RECOMMENDED THAT STRINGENT PROCESSES ARE ADOPTED IN VERIFYING THE IDENTITY OF THE PERSON(S) CLAIMING A RIGHT TO DEAL WITH THE LAND COMPRISED IN THIS FOLIO.

UNREGISTERED DEALINGS: NIL

*** END OF SEARCH ***

greenwich

PRINTED ON 9/8/2017

^{*} Any entries preceded by an asterisk do not appear on the current edition of the Certificate of Title. Warning: the information appearing under notations has not been formally recorded in the Register. InfoTrack an approved NSW Information Broker hereby certifies that the information contained in this document has been provided electronically by the Registrar General in accordance with Section 96B(2) of the Real Property

Appendix F EPA Records

Home

Protecting your environment

For business and industry

About the NSW FPA Media and information

Contact us

Contaminated land

- Management of contaminated land
- Consultants and site auditor scheme
- Underground petroleum storage systems

Guidelines under the CLM Act

NEPM amendment

- . Further guidance
- Record of notices

About the record

Search the record

Search tips

Disclaimer

List of NSW contaminated sites notified to EPA

Frequently asked questions

Forms

- + Other contamination issues
- Contaminated Land Management Program

Home Contaminated land Record of notices

Search results

Your search for: Suburb: GREENWICH

did not find any records in our database.

If a site does not appear on the record it may still be affected by contamination. For example:

- Contamination may be present but the site has not been regulated by the EPA under the Contaminated Land Management Act 1997 or the Environmentally Hazardous Chemicals Act 1985.
- The EPA may be regulating contamination at the site through a licence or notice under the Protection of the Environment Operations Act 1997 (POEO Act).
- Contamination at the site may be being managed under the planning process.

More information about particular sites may be available from:

- The POEO public register
- The appropriate planning authority: for example, on a planning certificate issued by the local council under section 149 of the Environmental Planning and Assessment Act.

See What's in the record and What's not in the record.

If you want to know whether a specific site has been the subject of notices issued by the EPA under the CLM Act, we suggest that you search by Local Government Area only and carefully review the sites that are listed.

This public record provides information about sites regulated by the EPA under the Contaminated Land Management Act 1997, including sites currently and previously regulated under the Environmentally Hazardous Chemicals Act 1985. Your inquiry using the above search criteria has not matched any record of current or former regulation. You should consider searching again using different criteria. The fact that a site does not appear on the record does not necessarily mean that it is not affected by contamination. The site may have been notified to the EPA but not yet assessed, or contamination may be present but the site is not yet being regulated by the EPA. Further information about particular sites may be available from the appropriate planning authority, for example, on a planning certificate issued by the local council under section 149 of the Environmental Planning and Assessment Act. In addition the EPA may be regulating contamination at the site through a licence under the Protection of the Environment Operations Act 1997. You may wish to search the POEO public register. POEO public register.

Search Again

Refine Search

Search TIP

To search for a specific site, search by LGA (local government area) and carefully review all sites listed.

. more search tips

Healthy Environment, Healthy Community, Healthy Business

Home

Protecting your environment

For business and industry

About the NSW EPA Media and information

Contact us

Contaminated land

- + Management of contaminated land
- Consultants and site auditor scheme
- Underground petroleum storage systems

Guidelines under the CLM Act

NEPM amendment

- Further guidance
- Record of notices

About the record

Search the record

Search tips

Disclaimer

List of NSW contaminated sites notified to EPA

Frequently asked questions

Forms

- + Other contamination issues
- + Contaminated Land Management Program

Home Contaminated land Record of notices

Search results

Your search for: LGA: Lane Cove Council

Matched 13 notices relating to 2 sites.

Search Again Refine Search Suburb Address Site Name Notices related to this site LANE COVE Sirius ROAD Pacific Power 1 current and 8 former LANE COVE 428-432 Mowbray ROAD Former Caltex Service Station 4 former NORTH

Page 1 of 1

29 August 2017

	1-Eleven Service Standi 154-160 Parramatta ROAD Woolworths Granville 158 Clyde STREET Old Granville Depot 23 Elizabeth STREET Evans Deacon Ind 28 Factory STREET	Service Station Unclassified Other Industry	required Under assessment Regulation under CLM Act not required Ongoing maintenance required to manage residual contamination (CLM
GRANVILLE	A'Becketts Creek Albert STREET	Unclassified	Act) Under assessment
GREENACRE	Former Plating Works 12 Claremont STREET	Unclassified	Regulation under CLM Act not required
GREENACRE	7-Eleven (former Mobil) Service Station 301-305 Hume HIGHWAY	Service Station	Regulation under CLM Act not required
GREENACRE	Caltex Service Station 87 - 91 Roberts ROAD	Service Station	Regulation under CLM Act not required
GREENWICH	Gore Creek Reserve - Drainage Line St Vincents ROAD	Other Industry	Regulation under CLM Act not required
GRENFELL	Grenfell Gasworks Corner Gooloogong Road & Bourke STREET	Gasworks	Regulation under CLM Act not required
GRENFELL	Former SRA Fuel Depot Grafton STREET	Other Petroleum	Regulation under CLM Act not required
GRETA	redevelopment site 112-114 High STREET	Other Industry	Regulation under CLM Act not required
GRETA	Coles Express Greta 122 New England HIGHWAY	Service Station	Régulation under CLM Act not required
GRETA	Former landfill Hollingshed ROAD	Landfill	Regulation under CLM Act not required
GREYSTANES	United (former Mobil) Service Station 73 Ettalono ROAD	Service Station	Under assessment

Home

Protecting your environment

For business and industry

About the NSW EPA Media and information

Contact us

Environment protection licences

+ Licensing under the POEO Act

Guide to licensing

eConnect EPA

Licence forms

Licence fees

+ Risk-based licensing

+ Load-based licensing

+ Emissions trading

- POEO Public Register

Terms of use: POEO public register

Search for licences, applications and notices

Search for penalty notices

Search for prosecutions and civil proceedings

Enforceable undertakings

Exemptions and approvals

Licensing FAQs

List of licences

Unlicensed premises still regulated by the EPA

National Pollutant Inventory

- + Compliance audit program
- + Reporting and managing incidents
- + Wind farm regulation

NSW Gas Plan Regulation

- + Gas industry in NSW
- + Native forest bio-fuel
- + Authorised officers

Regulation of railway systems activities

Scheduled Activities amendment exhibition Home > Environment protection licences > POEO Public Register > Search for licences, applications and notices

Search results

Your search for: General Search with the following criteria

Suburb - GREENWICH

returned 34 results

Export to ex	cel	1 of 2 Pages			Search Again
Number	Name	Location	Туре	Status	Issued date
6997	HOPE HEALTHCARE LIMITED	97 - 115 RIVER ROAD, GREENWICH, NSW 2065	POEO licence	Surrende	red07 Sep 2000
1019133	HOPE HEALTHCARE LIMITED	97 - 115 RIVER ROAD, GREENWICH, NSW 2065	s.58 Licence Variation	Issued	25 Jul 2002
1044473	HOPE HEALTHCARE LIMITED	97 - 115 RIVER ROAD, GREENWICH, NSW 2065	s.58 Licence Variation	Issued	14 Feb 2005
661	VIVA ENERGY AUSTRALIA PTY LTD	MANNS AVENUE, GREENWICH, NSW 2065	POEO licence	Issued	21 Sep 2000
1011542	VIVA ENERGY AUSTRALIA PTY LTD	MANNS AVENUE, GREENWICH, NSW 2065	s,58 Licence Variation	Issued	03 Feb 2003
1026078	VIVA ENERGY AUSTRALIA PTV LTD	MANNS AVENUE, GREENWICH, NSW 2065	s.58 Licence Variation	Issued	29 Apr 2003
1038436	VIVA ENERGY AUSTRALIA PTV LTD	MANNS AVENUE, GREENWICH, NSW 2065	s.58 Licence Variation	Issued	27 Jul 2004
1052515	VIVA ENERGY AUSTRALIA PTV LTD	MANNS AVENUE, GREENWICH, NSW 2065	s.58 Licence Variation	Issued	27 Jan 2006
1057746	VIVA ENERGY AUSTRALIA PTV LTD	MANNS AVENUE, GREENWICH, NSW 2065	s,58 Licence Variation	Issued	13 Apr 2006
1074280	VIVA ENERGY AUSTRALIA PTV LTD	MANNS AVENUE, GREENWICH, NSW 2065	s.58 Licence Variation	Issued	28 Nov 2007
1104118	VIVA ENERGY AUSTRALIA PTY LTD	MANNS AVENUE, GREENWICH, NSW 2065	s.58 Licence Variation	Issued	19 Jan 2010
1110938	VIVA ENERGY AUSTRALIA PTY LTD	MANNS AVENUE, GREENWICH, NSW 2065	s.58 Licence Variation	Issued	27 Jan 2010
1111156	VIVA ENERGY AUSTRALIA PTV LTD	MANNS AVENUE, GREENWICH, NSW 2065	s,58 Licence Variation	Issued	20 Jul 2010
1119078	VIVA ENERGY AUSTRALIA PTV LTD	MANNS AVENUE, GREENWICH, NSW 2065	s.58 Licence Variation	Issued	14 Sep 2010
1123624	VIVA ENERGY AUSTRALIA PTY LTD	MANNS AVENUE, GREENWICH, NSW 2065	s.58 Licence Variation	Issued	14 Jan 2011
1507243	VIVA ENERGY AUSTRALIA PTV LTD	MANNS AVENUE, GREENWICH, NSW 2065	s.58 Licence Variation	Issued	02 Nav 2012
1510092	VIVA ENERGY AUSTRALIA PTV LTD	MANNS AVENUE, GREENWICH. NSW 2065	s.58 Licence Variation	Issued	20 Nov 2012
30857675	58 VIVA ENERGY AUSTRALIA PTV LTD	MANNS AVENUE, GREENWICH, NSW 2065	Penalty Notice	Issued	13 Dec 2012
1511209	VIVA ENERGY AUSTRALIA PTY LTD	MANNS AVENUE, GREENWICH, NSW 2065	s.58 Licence Variation	Issued	09 Jan 2013
30857684	74VIVA ENERGY AUSTRALIA PTV LTD	MANNS AVENUE, GREENWICH, NSW 2065		Issued	24 Jan 2013
		110.11 4000			

Home

Protecting your environment

For business and industry

About the NSW

Media and information

Contact us

Environment protection licences

+ Licensing under the POEO Act

Guide to licensing

eConnect EPA

Licence forms

Licence fees

+ Risk-based licensing

+ Load-based licensing

+ Emissions trading

- POEO Public Register

Terms of use: POEO public register

Search for licences, applications and notices

Search for penalty notices

Search for prosecutions and civil proceedings

Enforceable undertakings

Exemptions and approvals

Licensing FAQs

List of licences

Unlicensed premises still regulated by the EPA

National Pollutant Inventory

+ Compliance audit program

+ Reporting and managing incidents

+ Wind farm regulation

NSW Gas Plan Regulation

+ Gas industry in NSW

+ Native forest bio-fuel

+ Authorised officers

Regulation of railway systems activities

Scheduled Activities amendment exhibition Home > Environment protection licences > POEO Public Register > Search for licences, applications and notices

Search results

Your search for: General Search with the following criteria

Suburb - GREENWICH

returned 34 results

Export to ex	cel	2 of 2 Pages			Search Again
Number	Name	Location	Туре	Status	Issued date
1511517	VIVA ENERGY AUSTRALIA PTV LTD	MANNS AVENUE, GREENWICH, NSW 2065	s.96 Prevention Notice	Issued	30 Jan 2013
1512326	VIVA ENERGY AUSTRALIA PTV LTD	MANNS AVENUE, GREENWICH, NSW 2065	Compliance Audit	Complete	21 Feb 2013
1511707	VIVA ENERGY AUSTRALIA PTY LTD	MANNS AVENUE, GREENWICH, NSW 2065	s,58 Licence Variation	Issued	30 Apr 2013
1532087	VIVA ENERGY AUSTRALIA PTY LTD	MANNS AVENUE, GREENWICH, NSW 2065	s.58 Licence Variation	Issued	24 Jul 2015
1533683	VIVA ENERGY AUSTRALIA PTY LTD	MANNS AVENUE, GREENWICH, NSW 2065	s,58 Licence Variation	Issued	26 Nov 2015
1543417	VIVA ENERGY AUSTRALIA PTY LTD	MANNS AVENUE, GREENWICH, NSW 2065	s.58 Licence Variation	Issued	17 Aug 2016
1546459	VIVA ENERGY AUSTRALIA PTV LTD	MANNS AVENUE, GREENWICH, NSW 2065	s,58 Licence Variation	Issued	18 Nov 2016
1547857	VIVA ENERGY AUSTRALIA PTY LTD	MANNS AVENUE, GREENWICH, NSW 2065	s,58 Licence Variation	Issued	20 Dec 2016
1548131	VIVA ENERGY AUSTRALIA PTY LTD	MANNS AVENUE, GREENWICH, NSW 2065	s.91 Clean Up Notice	Issued	06 Jan 2017
1548219	VIVA ENERGY AUSTRALIA PTY LTD	MANNS AVENUE, GREENWICH, NSW 2065	s.110 Variation of Clean Up Notice	Issued	11 Jan 2017
1548133	VIVA ENERGY AUSTRALIA PTY LTD	MANNS AVENUE, GREENWICH, NSW 2065	s,96 Prevention Notice	Issued	17 Jan 2017
1549855	VIVA ENERGY AUSTRALIA PTY LTD	MANNS AVENUE, GREENWICH, NSW 2065	s.110 Variation of Prevention Notice	Issued	01 Mar 2017
1548953	VIVA ENERGY AUSTRALIA PTY LTD	MANNS AVENUE, GREENWICH, NSW 2065	s,58 Licence Variation	Issued	28 Mar 2017
1552854	VIVA ENERGY AUSTRALIA PTY LTD	MANNS AVENUE, GREENWICH, NSW 2065	s.58 Licence Variation	Issued	26 Jun 2017
					12

29 August 2017

Appendix G Section 149 (2) and (5) Certificate

Tot 9911 3556

Fax 9911 3300

PLANNING CERTIFICATE

Under Section149 Environmental Planning and Assessment Act, 1979

Applicant:

Scott Burrows

Date of Issue:

31/07/2017

Level 1, 50 Margaret Street

Council Reference:

119216

Sydney 2000

Applicant Reference:

53033

Certificate No:

962

Owner(s):

Dept of Education

Property address:

72A Greenwich Road GREENWICH NSW 2065

Description:

LOT: A DP: 930344

Property Reference:

16567

INFORMATION PROVIDED PURSUANT TO SECTION 149(2) & (5) OF THE ACT

The planning information contained in this certificate applies specifically to the land.

Table of Contents			
Description Section			
Part 2: Information for Section 149 (2)			
Names of relevant planning instruments and DCP	1		
Zoning, Heritage, Conservation	2		
Zoning & land use under SEPP (Sydney Region Growth Centres) 2006	2A		
Complying Development	3		
Coastal protection	4		
Certain information relating to beaches and coasts	4A		
Annual charges: Local Government Act – coastal protection	4B		
Mine Subsidence	5		
Road Widening and road realignment	6		
Council and other public hazard risk restriction	7		
Flood related development controls	7A		
Land reserved for acquisition	8		
Contributions plans	9		
Biodiversity certified land	9A		
Biobanking agreements	10		
Bushfire prone land	11		
Property Vegetation Plans	12		
Orders under Trees (disputes between neighbours) act	13		
Directions under part 3A	14		
Site compatibility certificates and conditions for seniors housing	15		
Site compatibility certificates for infrastructure	16		
Site compatibility certificates and conditions for affordable rental housing	17		
Contaminated Land Management Act 1997s.59(2)	Note		
Part 5: Additional information for Section 149 (5)	Part 5		

To authenticate this certificate visit http://www.lanecove.nsw.gov.au/CertCheck

Cert. #:962, Page 1 of 9

Tel 9511 3566

Tak 5911 3500

PART 2:

See Names of relational planting that the second of the se

 The name of each environmental planning instrument that applies to the carrying out of development on the land.

Lane Cove Local Environmental Plan 2009 - gazetted on 19 February 2010

State Environmental Planning Policy No.19: Bushland in Urban Areas - gazetted 24 October 1986

State Environmental Planning Policy No.32: Urban Consolidation (Redevelopment of Urban Land) - gazetted 15 November 1991

State Environmental Planning Policy No.55: Remediation of Land - gazetted 28 August 1998

State Environmental Planning Policy No.64: Advertising and Signage - gazetted 16 March 2001

State Environmental Planning Policy (BASIX) 2004 - gazetted 25 June 2004

State Environmental Planning Policy (Major Projects) 2005 - gazetted 1 August 2005

State Environmental Planning Policy (Housing for seniors or people with a disability) 2004 Amendment No.2 - gazetted 31 March 2004 effective 12 October 2007

State Environmental Planning Policy (Temporary Structures and Places of Public Entertainment) - gazetted 28 September 2007

State Environmental Planning Policy (Infrastructure) 2007 - gazetted 21 December 2007; commenced 1 January 2008

State Environmental Planning Policy (Exempt & Complying Development Codes) - gazetted 12 December 2008

- 2) The name of each proposed environmental planning instrument that will apply to the carrying out of development on the land and that is or has been the subject of community consultations or on public exhibition under the Act (unless the Director-General has notified the council that the making of the proposed instrument has been deferred indefinitely or has not been approved)
- 3) The name of each development control plan that applies to the carrying out of development on the land. Lane Cove Development Control Plan, effective 22 February 2010
- 4) In this clause, proposed environmental planning instrument includes a planning proposal for a LEP or draft environmental planning instrument.

Refulling and trunch dead quick the results of the second

The land is zoned: Low Density Residential R2

To authenticate this certificate visit http://www.lanecove.nsw.gov.au/CertCheck

Cert. #:962, Page 2 of 9

45 Longues he Road Tane Cove MSW 2006

Tel: 0511 3555

Fac 5911 3500

1 Objectives of zone

- · To provide for the housing needs of the community within a low density residential environment.
- To enable other land uses that provide facilities or services to meet the day to day needs of residents.
- To retain, and where appropriate improve, the existing residential amenity of a detached single family dwelling area.
- To encourage new dwelling houses or extensions of existing dwelling houses that are not highly visible when viewed from the Lane Cove River or Parramatta River.
- To ensure that landscaping is maintained and enhanced as a major element in the residential environment.

2 Permitted without consent

Home occupations

3 Permitted with consent

Bed and breakfast accommodation; Boarding houses; Child care centres; Community facilities; Dual occupancies; Dwelling houses; Group homes; Health consulting rooms; Home businesses; Home industries; Hospitals; Multidwelling housing; Places of public worship; Respite day care centres; Roads; Signage

4 Prohibited

Any development not specified in item 2 or 3

- 5) Whether any development standards applying to the land fix minimum land dimensions for the erection of a dwelling-house on the land and, if so, the minimum land dimensions so fixed:
 No
- 6) Whether the land includes or comprises critical habitat: NO
- 7) Whether the land is in a conservation area (however described): NO
- 8) Whether an item of environmental heritage (however described) is situated on the land: Lane Cove LEP 2009 Heritage Schedule 5 (Environmental Heritage) applies.

Seic 24A

Zoning हार्लि शिक्त एवंदिश अस्ति । निर्मालकात्त्वसित्रिश्चानीकः विकास क्षित्र ((\$))लीक्यु । विवास क्षित्र ((\$))लीक्यु । विवास क्षित्र क्षित क्षत्र क्षित्र क्षित्र क्षित्र क्षित्र क्षित्र क्षित्र क्षित्र क्षित्र क्षित क्षत

Not applicable.

To authenticate this certificate visit http://www.lanecove.nsw.gov.au/CertCheck

Cert. #:962, Page 3 of 9

45 Longue, Le Roal: Lane Cove NSW 2000

Tel 9511 3565

Fax 8911 2300

Sing (2) Complying dovernment

- 1) The extent to which the land is on which complying development may be carried out under each of the codes for complying development because of the provisions of clauses 1.17A (1) (c) to (e), (2), (3) and (4) and 1.19 of State Environmental Planning Policy (Exempt and Complying Development Codes) 2008.
- 2) The extent to which complying development may not be carried out on that land because of the provisions of clauses 1.17A (1)(c) to (e), (2), (3) and (4) and 1.19 of that Policy and the reasons why it may not be carried out under those clauses.
- 3) If the council does not have sufficient information to ascertain the extent to which complying development may or may not be carried out on the land, a statement that a restriction applies to the land, but it may not apply to all of the land, and that council does not have sufficient information to ascertain the extent to which complying development may or may not be carried out on the land.
 - (1) Complying development may not be carried out on any part of the land under the SEPP.
 - (2) Affects the land as a whole. Reason: Local heritage item or draft heritage item under Lane Cove LEP.
 - (3) Not applicable

Sec 4! Correctliffededicin

Whether or not the land is affected by the operation of section 38 or 39 of the <u>Coastal Protection Act 1979</u>, but only to the extent that the council has been so notified by the Department of Services, Technology and Administration.

NO

Sec 4/A Centern referred to a relation relation relation relation beauties and coasis

Not applicable.

Spice 413 Annual charges under Louis Communication Act (\$225 for coefficient protection) spice without the Coefficient (\$250 for coefficient for coefficient (\$250 for coefficient for coeffic

Not applicable.

conclitative and a coes

Whether or not the land is proclaimed to be a mine subsidence district within the meaning of section 15 of the *Mine Subsidence Compensation Act 1961*:

NO

Sec. 6 Roxel White an agent his confineral grant of the second of the se

Whether or not the land is affected by any road widening or road realignment under:

To authenticate this certificate visit http://www.lanecove.nsw.gov.au/CertCheck Cert. #:962, Page 4 of 9

Lane Cove Council

43 Longues Le Road, Lane Coue NSW, 2006

Tel 9511,3555

- Division 2 of Part 3 of the Roads Act 1993: Not affected by road widening
- b) Any environmental planning instrument: NO
- c) Any resolution of the council: NO

(a)(e)(e), 77 engonteinheasan elembourestand und exploitora princophium allong verifico bane. Pronuncia

Whether or not the land is affected by a policy:

- a) Adopted by the council, or
- b) Adopted by any other public authority and notified to the council for the express purpose of its adoption by that authority being referred to in planning certificates issued by the council, that restricts the development of the land because of the likelihood of :-

Land slip:

NO

Bushfire:

See Section 11.

Tidal inundation:

NO

Subsidence:

NO

Acid Sulphate soils:

NO

विकास होता है जिस्सा का विकास का विकास किल्लो है। S(16; ///

- 1) Whether or not development on that land or part of the land for the purposes of swelling houses, dual occupancies, multi dwelling housing or residential flat buildings (not including development for the purposes of group homes or seniors housing) is subject to flood related development controls. The Lane Cove Development Control Plan - effective 22 February 2010 - applies
- 2) Whether or not development on that land or part of the land for any other purpose is subject to flood related development controls.

The Lane Cove Development Control Plan - effective 22 February 2010 - applies

Overland Flow

To authenticate this certificate visit http://www.lanecove.nsw.gov.au/CertCheck

Cert. #:962, Page 5 of 9

43 Longue, l'e Roal: Larie Cove NSW 2066

Tel 3611 3866

Tax 5011.5800

A study is currently being undertaken to determine exact locations subject to overland flow in the Municipality of Lane Cove. Until such time as Council has completed this work, property owners should conduct their own investigations to be satisfied that this property is not affected by overland flow.

Words and expressions in this clause have the same meanings as in the standard instrument set out in the <u>Standard Instrument (Local Environmental Plans) Order 2006.</u>

्रिकट (ह) - विवादी स्टब्स्कालस्य रिवार स्टब्स्किस्स्रिका

Whether or not any environmental planning instrument or proposed environmental planning instrument referred to in clause 1 makes provision in relation to the acquisition of the land by a public authority, as referred to in section 27 of the Act.

NO

Sexe: (3) (Choinfielleutiffenges joileine)

Lane Cove Section 94 Contributions Plan.

Size: SAA Blooding Kathy (Cantilled Hererd)

Not applicable.

Sheriff Biologia in the State of the State o

Not applicable.

Sectifi Budific promitant

The land is not identified on the Lane Cove Bushfire Prone Land Map dated 21st October 2004.

Sec. 122 Phoposity regestion plans

Not applicable.

Sec. 13 Orders under linees (disputes Between Neighbours) / Act 2006

Whether an order has been made under the *Trees (Disputes Between Neighbours) Act 2006* to carry out work in relation to a tree on the land (but only if the council has been notified of the order). **NONE**

Sec 183 Directions under Pent 3/A

If there is a direction by the Minister in force under section 75P (2) (c1) of the Act that a provision of an environmental planning instrument prohibiting or restricting the carrying out of a project or a stage of a project on the land under Part 4 of the Act does not have effect, a statement to that effect identifying the provision that does not have effect.

To authenticate this certificate visit http://www.lanecove.nsw.gov.au/CertCheck

Cert. #:962, Page 6 of 9

43 Loague, Te Road Tare Cove NSW 2006 161 9511 3559

Fac 5911 3500

NONE

Since this — Site compatibility conflicates and conflicates in enginee in engine

If the land to which State Environmental Planning Policy (Housing for Seniors or People with a Disability) 2004 applies:

NO

Sec: 65 Site compatibility conflicates for infrastructure.

Whether there is a valid site compatibility certificate (infrastructure), of which the council is aware, in respect of proposed development on the land. **NO**

Sec: 11/1 — The compellittly centificates and conditions for affordable scatellinessing

Whether there is a current site compatibility certificate (affordable rental housing), of which the council is aware, in respect of proposed development on the land:

NO

adismedial continuity of the second s

- The name of any development plan adopted by a relevant authority that applies to the land or that is proposed to be subject to a consent ballot.
 Not applicable
- The date of an subdivision order that applies to the land.
 Not applicable
- 3) Words and expressions used in this clause have the same meaning as they have in Part 16C of this Regulation.

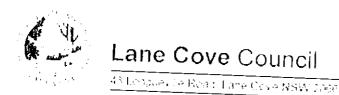
Note. The following matters are prescribed by section 59 (2) of the Contaminated Land Management Act 1997 as additional matters to be specified in a planning certificate:

- a) That the land to which the certificate relates is significantly contaminated land within the meaning of that Act if the land (or part of the land) is significantly contaminated land at the date when the certificate is issued, NO
- That the land to which the certificate relates is subject to a management order within the meaning of that Act –
 if it is subject to such an order at the date when the certificate is issued,
 NO

To authenticate this certificate visit http://www.lanecove.nsw.gov.au/CertCheck	Cert. #:962, Page 7 of 9

rigues Le Road Tarie Cove NSW 2006 tel Pott 3566

Fax 5011 3600


- That the land to which the certificate relates is subject of an approved voluntary management proposal within the meaning of that Act – if it is the subject of such an approved proposal at the date when the certificate is issued,
 NO
- That the land to which the certificate relates is subject to an ongoing maintenance order within the meaning of that Act – if it is subject to such an order at the date when the certificate is issued,
 NO
- e) That the land to which the certificate relates is the subject of a site audit statement within the meaning of that Act – if a copy of such a statement has been provided at any time to the local authority issuing the certificate.
 NO

Council records do not have sufficient information about the uses (including previous uses) of the land which is the subject of this Section 149 certificate. To confirm that the land hasn't been used for a purpose which would be likely to have contaminated the land, parties should make their own enquiries as to whether the land may be contaminated.

For further information, please contact the Strategic Planning Department on 9911 3612.

To authenticate this certificate visit http://www.lanecove.nsw.gov.au/CertCheck

Cert. #:962, Page 8 of 9

र्गेल प्रकार एकहरू

Lac 59113-307

Part 5: ADDITIONAL INFORMATION PROVIDED UNDER SECTION 149(5) OF THE ACT

The instruments and the plans should be examined in relation to the specific restrictions which may apply to any development which may be proposed.

The land is subject to a Tree Preservation Order, details of which are available at Council's Customer Service Centre.

The Register of Consents may be examined at Council's Customer Service Centre for particulars relating to development consents which may have been issued for the use or development of the land.

Enquiries regarding Arterial Road Reservations and Regional Open Space should be directed to the Roads and Traffic Authority and Department of Planning respectively.

The information provided concerning the Coastal Protection Act, 1979 is only to the extent that the Council has been notified by the Department of Public Works and Services.

For more information, please contact the Strategic Planning Department on 9911 3555

To authenticate this certificate visit http://www.lanecove.nsw.gov.au/CertCheck

Cert. #:962, Page 9 of 9

Tel 9511 3555

โล• 90°1 2400

PLANNING CERTIFICATE

Under Section149 Environmental Planning and Assessment Act, 1979

Applicant:

Scott Burrows

Date of Issue:

31/07/2017

Level 1, 50 Margaret Street

Council Reference:

119215

Sydney 2000

Applicant Reference:

Certificate No:

961

Owner(s):

Dept of Education

Property address:

30-32 Kingslangley Road GREENWICH NSW 2065

Description:

LOT: 1 DP: 746491 LOC:

Property Reference:

13832

INFORMATION PROVIDED PURSUANT TO SECTION 149(2) & (5) OF THE ACT

The planning information contained in this certificate applies specifically to the land.

Table of Contents	
Description	Section No.
Part 2: Information for Section 149 (2)	- Oction Ito.
Names of relevant planning instruments and DCP	1
Zoning, Heritage, Conservation	2
Zoning & land use under SEPP (Sydney Region Growth Centres) 2006	2A
Complying Development	3
Coastal protection	4
Certain information relating to beaches and coasts	4A
Annual charges: Local Government Act - coastal protection	4B
Mine Subsidence	5
Road Widening and road realignment	6
Council and other public hazard risk restriction	7
Flood related development controls	7A
Land reserved for acquisition	8
Contributions plans	9
Biodiversity certified land	9A
Biobanking agreements	10
Bushfire prone land	11
Property Vegetation Plans	12
Orders under Trees (disputes between neighbours) act	13
Directions under part 3A	14
Site compatibility certificates and conditions for seniors housing	15
Site compatibility certificates for infrastructure	16
Site compatibility certificates and conditions for affordable rental housing	17
Contaminated Land Management Act 1997s.59(2)	Note
Part 5: Additional information for Section 149 (5)	Part 5

To authenticate this certificate visit http://www.lanecove.nsw.gov.au/CertCheck

Cert. #:961, Page 1 of 9

43 tengueri e Real: Lane Ocya MSM 1066

Tel 9511 2556

Fac 5911 5800

PART 2:

Secrit Names of relevant planning this truments and DGP

 The name of each environmental planning instrument that applies to the carrying out of development on the land.

Lane Cove Local Environmental Plan 2009 - gazetted on 19 February 2010

State Environmental Planning Policy No.19: Bushland in Urban Areas - gazetted 24 October 1986

State Environmental Planning Policy No.32: Urban Consolidation (Redevelopment of Urban Land) - gazetted 15 November 1991

State Environmental Planning Policy No.55: Remediation of Land - gazetted 28 August 1998

State Environmental Planning Policy No.64: Advertising and Signage - gazetted 16 March 2001

State Environmental Planning Policy (BASIX) 2004 - gazetted 25 June 2004

State Environmental Planning Policy (Major Projects) 2005 - gazetted 1 August 2005

State Environmental Planning Policy (Housing for seniors or people with a disability) 2004 Amendment No.2 - gazetted 31 March 2004 effective 12 October 2007

State Environmental Planning Policy (Temporary Structures and Places of Public Entertainment) - gazetted 28 September 2007

State Environmental Planning Policy (Infrastructure) 2007 - gazetted 21 December 2007; commenced 1 January 2008

State Environmental Planning Policy (Exempt & Complying Development Codes) - gazetted 12 December 2008

- 2) The name of each proposed environmental planning instrument that will apply to the carrying out of development on the land and that is or has been the subject of community consultations or on public exhibition under the Act (unless the Director-General has notified the council that the making of the proposed instrument has been deferred indefinitely or has not been approved)
- 3) The name of each development control plan that applies to the carrying out of development on the land. Lane Cove Development Control Plan, effective 22 February 2010
- 4) In this clause, proposed environmental planning instrument includes a planning proposal for a LEP or draft environmental planning instrument.

Special 2 Modern and literard upon marchan real popular literatures

The land is zoned: Low Density Residential R2

To authenticate this certificate visit http://www.lanecove.nsw.gov.au/CertCheck

Cert. #:961, Page 2 of 9

43 to que de Rost Tare Cova NSW 7066

161 5511 3555

Tax 1911 2400

1 Objectives of zone

- To provide for the housing needs of the community within a low density residential environment.
- To enable other land uses that provide facilities or services to meet the day to day needs of residents.
- To retain, and where appropriate improve, the existing residential amenity of a detached single family dwelling area.
- To encourage new dwelling houses or extensions of existing dwelling houses that are not highly visible when viewed from the Lane Cove River or Parramatta River.
- To ensure that landscaping is maintained and enhanced as a major element in the residential environment.

2 Permitted without consent

Home occupations

3 Permitted with consent

Bed and breakfast accommodation; Boarding houses; Child care centres; Community facilities; Dual occupancies; Dwelling houses; Group homes; Health consulting rooms; Home businesses; Home industries; Hospitals; Multidwelling housing; Places of public worship; Respite day care centres; Roads; Signage

4 Prohibited

Any development not specified in item 2 or 3

- 5) Whether any development standards applying to the land fix minimum land dimensions for the erection of a dwelling-house on the land and, if so, the minimum land dimensions so fixed: No
- 6) Whether the land includes or comprises critical habitat: **NO**
- 7) Whether the land is in a conservation area (however described): NO
- 8) Whether an item of environmental heritage (however described) is situated on the land: NO

Sec: 2A Zorfigerid lend use under Skie Eindronnenkel Fleinfige Policy (Sydiacy Region Crowth Centres) 2006

Not applicable.

To authenticate this certificate visit http://www.lanecove.nsw.gov.au/CertCheck

Cert. #:961, Page 3 of 9

43 Longue, Le Road Tarle Cove NSW 1966

Tel 1611 3659

Lav 5911.3500

Sac 3 Complying devotopment

- 1) The extent to which the land is on which complying development may be carried out under each of the codes for complying development because of the provisions of clauses 1.17A (1) (c) to (e), (2), (3) and (4) and 1.19 of State Environmental Planning Policy (Exempt and Complying Development Codes) 2008.
- 2) The extent to which complying development may not be carried out on that land because of the provisions of clauses 1.17A (1)(c) to (e), (2), (3) and (4) and 1.19 of that Policy and the reasons why it may not be carried out under those clauses.
- 3) If the council does not have sufficient information to ascertain the extent to which complying development may or may not be carried out on the land, a statement that a restriction applies to the land, but it may not apply to all of the land, and that council does not have sufficient information to ascertain the extent to which complying development may or may not be carried out on the land.
 - (1) Complying development may be carried out on the land as a whole under the SEPP in accordance with the following Codes (unless the land is excluded elsewhere in this Section):- General Housing Code, Housing Alterations Code, General Development Code, Subdivision Code, Demolition Code and/or Fire Safety Code.
 - (2) Not applicable.
 - (3) Not applicable

Sec. 4 Constall Protection

Whether or not the land is affected by the operation of section 38 or 39 of the <u>Coastal Protection Act 1979</u>, but only to the extent that the council has been so notified by the Department of Services, Technology and Administration.

NO

Sec: 4/A Centella Information relating to branches and coasts

Not applicable.

Sec: 43 Annel dieges under Goes Germanner Act 1999 for coesiell protection (24) sets second of the coesies call protection (4) second of the coesies call

Not applicable.

Concluiating and a concentration of concentration of the concentration o

Whether or not the land is proclaimed to be a mine subsidence district within the meaning of section 15 of the Mine Subsidence Compensation Act 1961: NO

To authenticate this certificate visit http://www.lanecove.nsw.gov.au/CertCheck Cert. #:961, Page 4 of 9

141 9611 3566

fax 59512500

Whether or not the land is affected	by an	y road widening	g of	r road rea	lignment	under.
-------------------------------------	-------	-----------------	------	------------	----------	--------

- a) Division 2 of Part 3 of the Roads Act 1993: Not affected by road widening
- b) Any environmental planning instrument:
- c) Any resolution of the council: **NO**

Sec: 7 Council and edine juddic authority politics on hexachiele wathickors

Whether or not the land is affected by a policy:

- a) Adopted by the council, or
- b) Adopted by any other public authority and notified to the council for the express purpose of its adoption by that authority being referred to in planning certificates issued by the council, that restricts the development of the land because of the likelihood of :-

Land slip:

NO

Bushfire:

See Section 11.

Tidal inundation:

NO

Subsidence:

NO

Acid Sulphate soils:

NO

Sec: 7/A Head relief development controls line methon

- Whether or not development on that land or part of the land for the purposes of swelling houses, dual occupancies, multi dwelling housing or residential flat buildings (not including development for the purposes of group homes or seniors housing) is subject to flood related development controls.
 - The Lane Cove Development Control Plan effective 22 February 2010 applies
- 2) Whether or not development on that land or part of the land for any other purpose is subject to flood related development controls.

The Lane Cove Development Control Plan - effective 22 February 2010 - applies

To authenticate this certificate visit http://www.lanecove.nsw.gov.au/CertCheck	Cert. #:961, Page 5 of 9
	-

Tel 3611 3666

Tai 5911,2800

Overland Flow

A study is currently being undertaken to determine exact locations subject to overland flow in the Municipality of Lane Cove. Until such time as Council has completed this work, property owners should conduct their own investigations to be satisfied that this property is not affected by overland flow.

Words and expressions in this clause have the same meanings as in the standard instrument set out in the <u>Standard Instrument (Local Environmental Plans) Order 2006.</u>

Sac: 13 Land Caamad for acquished

Whether or not any environmental planning instrument or proposed environmental planning instrument referred to in clause 1 makes provision in relation to the acquisition of the land by a public authority, as referred to in section 27 of the Act.

NO

Sec. (Contributions plans

Lane Cove Section 94 Contributions Plan.

Sac 9A Bioliversity confined lind

Not applicable.

Sec 10 Biobraking apparatis

Not applicable.

Sec. 111 Bushing prone line

The land is not identified on the Lane Cove Bushfire Prone Land Map dated 21st October 2004.

Sec. 112. Property vegetation plans

Not applicable.

Serc: 13 Oktober 11 (classification) (classification) (carefold)

Whether an order has been made under the *Trees (Disputes Between Neighbours) Act 2006* to carry out work in relation to a tree on the land (but only if the council has been notified of the order). **NONE**

Significations under Part SA

If there is a direction by the Minister in force under section 75P (2) (c1) of the Act that a provision of an environmental planning instrument prohibiting or restricting the carrying out of a project or a stage of a project

To authenticate this certificate visit http://www.lanecove.nsw.gov.au/CertCheck

Cert. #:961, Page 6 of 9

45 Longues Le Road, Lane Cove NSW 2006

160,9941,3566

Lac 59513800

on the land under Part 4 of the Act does not have effect, a statement to that effect identifying the provision that does not have effect.

NONE

grainspoid excorpers von encolligació dans existentificas y difficial estación estación de la constante de la

If the land to which State Environmental Planning Policy (Housing for Seniors or People with a Disability) 2004 applies:

NO

Sec. 16 The competibility confileries for intrestructure

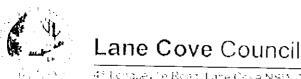
Whether there is a valid site compatibility certificate (infrastructure), of which the council is aware, in respect of proposed development on the land.

NO

Sec: 117 Site competibility centificates and conditions for eligible lentel from sing

Whether there is a current site compatibility certificate (affordable rental housing), of which the council is aware, in respect of proposed development on the land:

NO


Sec: 18 Paper Subdivision Information

- The name of any development plan adopted by a relevant authority that applies to the land or that is proposed to be subject to a consent ballot.
 Not applicable
- The date of an subdivision order that applies to the land.
 Not applicable
- Words and expressions used in this clause have the same meaning as they have in Part 16C of this Regulation.

Note. The following matters are prescribed by section 59 (2) of the Contaminated Land Management Act 1997 as additional matters to be specified in a planning certificate:

- a) That the land to which the certificate relates is significantly contaminated land within the meaning of that Act –
 if the land (or part of the land) is significantly contaminated land at the date when the certificate is issued,
 NO
- That the land to which the certificate relates is subject to a management order within the meaning of that Act –
 if it is subject to such an order at the date when the certificate is issued,
 NO

To authenticate this certificate visit http://www.lanecove.nsw.gov.au/CertCheck	Cert #:961 Page 7 of 9
g	0014111.001, 1 4901 010

45 Longues to Read Tune Cove NSW 2005 Tel 95

Tel 9511,2566

fak 5911.2*8*00

- That the land to which the certificate relates is subject of an approved voluntary management proposal within the meaning of that Act – if it is the subject of such an approved proposal at the date when the certificate is issued,
 NO
- d) That the land to which the certificate relates is subject to an ongoing maintenance order within the meaning of that Act – if it is subject to such an order at the date when the certificate is issued, NO
- e) That the land to which the certificate relates is the subject of a site audit statement within the meaning of that Act if a copy of such a statement has been provided at any time to the local authority issuing the certificate. NO

Council records do not have sufficient information about the uses (including previous uses) of the land which is the subject of this Section 149 certificate. To confirm that the land hasn't been used for a purpose which would be likely to have contaminated the land, parties should make their own enquiries as to whether the land may be contaminated.

Nation Building and Jobs Plan (State Infrastructure Delivery) Act 2009.

The NSW Infrastructure Coordinator General has issued an Order under Section 23 and an Authorisation under Section 24 of the Nation Building and Jobs Plan (State Infrastructure Delivery) Act 2009 for the carrying out of development being construction of a hall and covered outdoor learning area, tree removal, landscaping and associated site works. The Order and Authorisation may exempt the above project from complying with certain development control legislation. For further details please contact the Nation Building and Jobs Plan Taskforce on telephone number 9226 2520.

For further information, please contact the Strategic Planning Department on 9911 3612.

To authenticate this certificate visit http://www.lanecove.nsw.gov.au/CertCheck

Cert. #:961, Page 8 of 9

Tel: 7011 3565 Fac: 9911 3400

Part 5: ADDITIONAL INFORMATION PROVIDED UNDER SECTION 149(5) OF THE ACT

The instruments and the plans should be examined in relation to the specific restrictions which may apply to any development which may be proposed.

The land is subject to a Tree Preservation Order, details of which are available at Council's Customer Service Centre.

The Register of Consents may be examined at Council's Customer Service Centre for particulars relating to development consents which may have been issued for the use or development of the land.

Enquiries regarding Arterial Road Reservations and Regional Open Space should be directed to the Roads and Traffic Authority and Department of Planning respectively.

The information provided concerning the Coastal Protection Act, 1979 is only to the extent that the Council has been notified by the Department of Public Works and Services.

For more information, please contact the Strategic Planning Department on 9911 3555

To authenticate this certificate visit http://www.lanecove.nsw.gov.au/CertCheck

Cert. #:961, Page 9 of 9

Appendix H Heritage Records

Search Results		
results found.		new search edit se
Greenwich Baths Albert St	Greenwich, NSW, Australia	(Indicative Place) Register of the National Estate (Non-statutory archive)
and Sove Bushland Bors River Rd	Osborne Park, NSW, Australia	(Registered) Register of the National Estate (Non-statutory archive)
terramatta and Lane Cove Rovers Landscapes	Sydney, NSW, Australia	(indicative Place) Register of the National Estate (Non-statutory archive)
Pydriev Harbour Landissas-Arka	Sydney, NSW, Australia	(Indicative Place) Register of the National Estate (Non-statutory archive)
Wilcone House, 18 Wilcone Av	Greenwich, NSW, Australia	(Registered) Register of the National Estate (Non-statutory archive)
		Report Produced: Tue Aug 22 12:03:56 2017

Section 1. Aboriginal Places listed under the National Parks and Wildlife Act.

Your search did not return any matching results.

Section 2. Items listed under the NSW Heritage Act.

Your search returned 2 records.

Item name •	Address	Suburb	LGA	SHR
<u>Pallister</u>	95 River Road	Greenwich	Lane Cove	00574
Railway electricity tunnel under Sydney Harbour		Birchgrove / Greenwich	Leichhardt	01231

Section 3. Items listed by Local Government and State Agencies.

Your search returned 121 records.

Item name -	Address	Suburb	LGA	Information source
Balmain to Greenwich Tunnel, including docking facilities and services buildings	Long Nose Point (from)	Balmain	Leichhardt	GAZ
Banksia (former name)	7 Gore Street	Greenwich	Lane Cove	LGOV
Bay Street Wharf	Bay Street	Greenwich	Lane Cove	LGOV
Bay Street, Greenwich Ferry Wharf Site	Bay Street	Greenwich	Lane Cove	SGOV
Bedford and Florence	73-75 Carlotta Street	Greenwich	Lane Cove	LGOV
Blythswood	41 George Street	Greenwich	Lane Cove	LGOV
Boat sheds and slips	O'Connell Street	Greenwich	Lane Cove	GAZ
Bond Store (Former), Quarry, Wharf, seawall	O'Connell Street - Bond Reserve	Greenwich	Lane Cove	LGOV
Buena Vista	23 Mitchell Street	Greenwich	Lane Cove	LGOV
Electricity tunnel	Manns Point Reserve (foreshore of)	Greenwich	Lane Cove	GAZ

Federation Dwelling	39 George Street	Greenwich	Lane Cove	LGOV
Fells Shale Oil Refinery	124 Gother Avenue	Greenwich	Lane Cove	LGOV
Glenwood Nursing Home	34-40 Greenwich Road	Greenwich	Lane Cove	LGOV
Greendale	70 Greenwich Road	Greenwich	Lane Cove	LGOV
Greenwich 12' Flying Squadron	Bay Street	Greenwich	Lane Cove	LGOV
Greenwich Baths	Albert Street, Parramatta River	Greenwich	Lane Cove	LGOV
Greenwich Conservation Area	Greenwich Peninsula South	Greenwich	Lane Cove	LGOV
Greenwich House	21 George Street	Greenwich	Lane Cove	LGOV
Greenwich Infants School	72A Greenwich Road	Greenwich	Lane Cove	LGOV
Greenwich Point Ferry Wharf Site	Mitchell Street	Greenwich	Lane Cove	SGOV
Greenwich Point Wharf	Serpentine Road	Greenwich	Lane Cove	LGOV
Greenwich Uniting Church	9 Carlotta Street	Greenwich	Lane Cove	LGOV
<u>Hazelhurst</u>	90 River Road	Greenwich	Lane Cove	LGOV
House	92 River Road	Greenwich	Lane Cove	LGOV
House	125 Greenwich Road	Greenwich	Lane Cove	LGOV
<u>House</u>	12 St. Lawrence Street	Greenwich	Lane Cove	LGOV

<u>House</u>	11 Robertson Street	Greenwich	Lane Cove	LGOV
House	8 Mitchell Street	Greenwich	Lane Cove	LGOV
nouse	o iviitcheil Street	Greenwich	Lane Cove	LGOV
House	24 St. Lawrence Street	Greenwich	Lane Cove	LGOV
<u>House</u>	7 Mitchell Street (18 Wallace Street)	Greenwich	Lane Cove	LGOV
House	12 Carlotta Street	Greenwich	Lane Cove	LGOV
House	13 Carlotta Street	Greenwich	Lane Cove	LGOV
House	32 Carlotta Street	Greenwich	Lane Cove	LGOV
<u>House</u>	2 Chisholm Street	Greenwich	Lane Cove	LGOV
House	13 Chisholm Street	Greenwich	Lane Cove	LGOV
House	5 Coolabah Avenue	Greenwich	Lane Cove	LGOV
House	4 Evelyn Street	Greenwich	Lane Cove	LGOV
House	2 Ford Street	Greenwich	Lane Cove	LGOV
House	8 Bellevue Avenue	Greenwich	Lane Cove	LGOV
House	14 Bellevue Avenue	Greenwich	Lane Cove	LGOV
House	10 Anglo Road	Greenwich	Lane Cove	LGOV

House	100 Greenwich Road	Greenwich	Lane Cove	LGOV
House	1 Gore Street	Greenwich	Lane Cove	LGOV
House	2 Victoria Street	Greenwich	Lane Cove	LGOV
House	3 Victoria Street	Greenwich	Lane Cove	LGOV
House	10 Victoria Street	Greenwich	Lane Cove	LGOV
House	6-8 Evelyn Street	Greenwich	Lane Cove	LGOV
House	129 Greenwich Road	Greenwich	Lane Cove	LGOV
House	5 Park Road	Greenwich	Lane Cove	LGOV
House	7 Park Road	Greenwich	Lane Cove	LGOV
House	2 Evelyn Street	Greenwich	Lane Cove	LGOV
House	10 George Street	Greenwich	Lane Cove	LGOV
House	18 George Street	Greenwich	Lane Cove	LGOV
House	35 Greenwich Road	Greenwich	Lane Cove	LGOV
House	45 Greenwich Road	Greenwich	Lane Cove	LGOV
House	82 Greenwich Road	Greenwich	Lane Cove	LGOV
House	5 O'Connell Street	Greenwich	Lane Cove	LGOV

House	9 Richard Street	Greenwich	Lane Cove	LGOV
House	28 Upper Serpentine Road	Greenwich	Lane Cove	LGOV
<u>House</u>	12 Victoria Street	Greenwich	Lane Cove	LGOV
House	14 Victoria Street	Greenwich	Lane Cove	LGOV
House	2 Wallace Street	Greenwich	Lane Cove	LGOV
House	2 Anglo Road	Greenwich	Lane Cove	LGOV
House	4 Balfour Street	Greenwich	Lane Cove	LGOV
House	8 Balfour Street	Greenwich	Lane Cove	LGOV
House	2 Carlotta Street	Greenwich	Lane Cove	LGOV
House	79 Carlotta Street	Greenwich	Lane Cove	LGOV
House	34 Chisholm Street	Greenwich	Lane Cove	LGOV
House	45 Carlotta Street	Greenwich	Lane Cove	LGOV
<u>House</u>	50 Carlotta Street	Greenwich	Lane Cove	LGOV
House	8 Eastview Street	Greenwich	Lane Cove	LGOV
House	18 Mitchell Street	Greenwich	Lane Cove	LGOV

House	10 Robertson Street	Greenwich	Lane Cove	LGOV
House	12 Anglo Road	Greenwich	Lane Cove	LGOV
House	14 Anglo Road	Greenwich	Lane Cove	LGOV
House	16 Kingslangley Road	Greenwich	Lane Cove	LGOV
House	143 Greenwich Road	Greenwich	Lane Cove	LGOV
House	153 Greenwich Road	Greenwich	Lane Cove	LGOV
House	163 Greenwich Road	Greenwich	Lane Cove	LGOV
House	19 King William Street	Greenwich	Lane Cove	LGOV
House and Garage	20 Wilona Avenue	Greenwich	Lane Cove	LGOV
House and Mature Trees	11 Mitchell Street	Greenwich	Lane Cove	LGOV
House and Mature Trees	13 Mitchell Street	Greenwich	Lane Cove	LGOV
House and Mature Trees	15 Mitchell Street	Greenwich	Lane Cove	LGOV
House and Mature Trees	17 Mitchell Street	Greenwich	Lane Cove	LGOV
House and Mature Trees	19 Mitchell Street	Greenwich	Lane Cove	LGOV
Houses	36, 38, 42, 44, 45, 46 , 47, 48 King William Street	Greenwich	Lane Cove	LGOV

Houses	48, 50, 52 Chisholm Street	Greenwich	Lane Cove	LGOV
Houses	19-21 Glenview Street	Greenwich	Lane Cove	LGOV
<u>Houses</u>	13 - 15 Kingslangley Road	Greenwich	Lane Cove	LGOV
Houses	1-3 Hinkler Street	Greenwich	Lane Cove	LGOV
Houses	111-113 Greenwich Road	Greenwich	Lane Cove	LGOV
Houses - Gore Street Precinct	1, 3, 5, 7, 9 Gore Street	Greenwich	Lane Cove	LGOV
lone	9 Gore Street	Greenwich	Lane Cove	LGOV
John Taylor Memorial Church	86A Greenwich Road	Greenwich	Lane Cove	LGOV
<u>Mandalay</u>	2 - 4 Ulonga Avenue	Greenwich	Lane Cove	LGOV
Marathon	7 Carlotta Street	Greenwich	Lane Cove	LGOV
<u>Pallister</u>	95 River Road	Greenwich	Lane Cove	LGOV
Railway Electricity Tunnel		Greenwich Point To Birchgrove	Lane Cove	LGOV
Remains of Greenwich Point Wharf	21 George Street	Greenwich	Lane Cove	GAZ
Riverside	22 Wallace Street	Greenwich	Lane Cove	LGOV
<u>Rockleigh</u>	11 Gore Street	Greenwich	Lane Cove	LGOV

Rockleigh	2 Richard Street (Also Known As 2 Richard Street)	Greenwich	Lane Cove	LGOV
<u>Sandringham</u>	3 Park Road	Greenwich	Lane Cove	LGOV
Sandstone Swimming Pool (Assoc With Pallister, 95 River Road)	51 Gore Street	Greenwich	Lane Cove	LGOV
Semi-detached Dwellings	5-7 St. Lawrence Street	Greenwich	Lane Cove	LGOV
Shell Installation	124 Greenwich Road	Greenwich	Lane Cove	LGOV
St. Giles Anglican Church	6-12 Greendale Street	Greenwich	Lane Cove	LGOV
Stone Embankment Walls	Gore Street	Greenwich	Lane Cove	LGOV
Stone Sea Wall	40 Serpentine Road	Greenwich	Lane Cove	LGOV
Stone Steps To Rear of House	36 Serpentine Road	Greenwich	Lane Cove	LGOV
Streetscape Elements (Drain, Walls, Rocky Outcrop, Steps)	Bent Street	Greenwich	Lane Cove	LGOV
Streetscape Elements (Sandstone Gutters, Steps, Outcrops and Kerbing)	Greenwich Road	Greenwich	Lane Cove	LGOV
Streetscape Elements (Sandstone Steps, Outcrops, Kerbing and Retaining Wall)	Greenwich Point (Various Streets)	Greenwich Point	Lane Cove	LGOV
<u>Terraces</u>	16-18 and 20-22 St. Lawrence Street	Greenwich	Lane Cove	LGOV
<u>Tewhare</u>	5 Carlotta Street	Greenwich	Lane Cove	LGOV
<u>Waterview</u>	6 Ford Street	Greenwich	Lane Cove	LGOV
Wilds Pass Archaeological Area (C 1820)	Wild's Pass, Cookbundoon Range, Off Tarlo River Road	Greenwich Park	Goulburn Mulwaree	LGOV
Wilona	18 Wilona Avenue	Greenwich	Lane Cove	LGOV
Wyncourt	14 - 16 Ford Street	Greenwich	Lane Cove	LGOV

Appendix I Calibration & Decontamination Records

Field Equipment Calibration and Decontamination

PROJECT NAME: ESA 3 SCHOOLS PROJECT NO: 53033 FIELD DATES: 16 18 17 FIELD STAFF: SC **CALIBRATION SUMMARY** EQUIPMENT: PID Isobutylene (100ppm) **CALIBRATION STANDARD:** DATE TIME COMMENTS READING (ppm_v) 7:45am WOppm (al ok Cisobutylene) 16/8/17 Cal ok. Oppm 100.00 ppm 17/8/17 07:30 0.0 ppm 11 **DECONTAMINATION SUMMARY** N/A (Drill rig) **EQUIPMENT:** (NA 1. Was the equipment decontaminated appropriately prior to sampling at each location? 2. Was excess soil removed by scraping, brushing or wiping with disposable towels? (NA) (NA 3. Was the equipment contaminated with grease, tar or similar material? If so, was the equipment steam cleaned or rinsed with pesticide-grade acetone:hexane? NA 4. Was phosphate-free detergent used to wash the equipment? NA 5. Was the equipment rinsed with clean water? 6. Was the equipment then rinsed with deionised water? (NA) NA 7. Were all sample containers cleaned and acid or solvent washed prior to sample collection? WERE ANY ADDITIONAL DECONTAMINATION MEASURES REQUIRED? PROVIDE DETAILS. Fresh nitile groves were used for each sample collection

Appendix J QA/QC Results

	1		Num Results	Holdi	ng Times (days)	Lab C	ontrol Sam	ples	Method and Stor	rage Blanks	Laboratory Duplic	cates	Surr	rogates	Matrix,Trip and Cor	npound Sp	oikes	Field,Rinsate and	i Trip Blar	inks	Field [Duplicates	s
			n QA omal + mposite)	atility	mple to traction mple to ahysis	covery %	phorted	ceptable	e Be	ported	IX RPD > IL x 1 III III III III III III III	ceptable	covery %	ported	covery %	m ported	ceptable	egu	ported	ceptable	x RPD >	m	ceptable
Chem_Group Asbestos	ChemName Approx. Sample Mass Asbestos from ACM in Soil	Range	2 <u>2 5</u> 14 14		0 to 1 7 to 8	, <u>®</u>	0 0	Ao	<u>8</u> 2	0 8 4	0 0 RN B B B	N A	ů ž	0 A	<u>8</u>	0	Ac	Rai	0 0	Ace	EQ Ma	0 8 6	N A
	Asbestos from FA & AF in Soil Asbestos Reported Result		14		0 to 1 7 to 8		0			0	0	N N		0		0			0			0	N N
Asbestos	Mass ACM		14	Other	0 to 1 7 to 8	′	0			0	0	N		0		0			0			0	N
	Mass AF Mass Asbestos in ACM Mass Asbestos in AF		14 14 14	Other Other	0 to 1 7 to 8 0 to 1 7 to 8 0 to 1 7 to 8	((0 0 0			0 0	0 0 0	N N N		0 0		0 0			0 0			0 0	N N
	Mass Asbestos in FA Mass Asbestos in FA & AF Mass FA		14 14 14	Other	0 to 1 7 to 8 0 to 1 7 to 8 0 to 1 7 to 8	1	0			0 0	0 0 0	N N		0 0 0		0			0			0 0	N N
	ACM - Comment AF - Comment		14 14	Other Other	0 to 1 7 to 8 0 to 1 7 to 8	(0			0	0	N N		0		0			0			0	N N
	FA - Comment Organic Fibres - Comment		14 14 14	Other Other	0 to 1 7 to 8 0 to 1 7 to 8		0			0 0	0 0	N N		0		0 0			0 0			0 0	N
	Respirable Fibres - Comment Synthetic Fibres - Comment		14	Other	0 to 1 7 to 8	1	0			0	0	N		0		0			0			0	N
ВТЕХ	Benzene Ethylbenzene Toluene	0.1 mg/kg 0.1 mg/kg 0.1 mg/kg	14 14 14	VOC VOC	3 to 5 7 to 8	/ 88 to 127 / 92 to 126	2	Y Y Y	ND ND	2 Y 2 Y 2 Y	1 0 0	N N		0 0	79 to 101 96 to 119 84 to 96	2 2	Y Y Y		0 0			2 2	
	Xylene (m & p) Xylene (o) Xylene (Total)	0.2 mg/kg 0.1 mg/kg 0.3 mg/kg	14 14 14		3 to 5 7 to 8 3 to 5 7 to 8 3 to 5 7 to 8		0	Y	ND	2 Y 2 Y 2 Y	0 0 0	N N		0 0 0	97 to 118 98 to 112 97 to 116	2 2 2	Y Y Y		0			2 2	Y Y Y
Chlorinated Benzenes	Hexachlorobenzene	0.05 mg/kg	14	SVOC	3 to 5 7 to 8	/ 90 to 102	2	Y		2 Y	0	N		0	94 to 103	2	Υ		0			2	Y
EPA VIC - IWRG621	Organochlorine Pesticides EPAVic Other Organochlorine Pesticides EPAVic	0.1 mg/kg 0.1 mg/kg	14 14	SVOC	0 to 1 7 to 8 0 to 1 7 to 8	(0			0	0	N N		0		0			0			2	Y
Ionic Balance	Cation Exchange Capacity EC 1:5 soil:water	0.05 meq/100g 10 μS/cm	14 14	Other	6 to 7 7 to 8 3 to 5 7 to 8	1	0			2 Y	9 2	N Y		0		0			0			0	N
	pH (Leachate fluid) pH (TCLP - HCl addition) pH (TCLP - initial)	0.1 PH UNITS 0.1 ph Units 0.1 ph Units	5 5 5	SVOC other other	4 7 5 7	1	0 0			0 0	0 0 0	N N N		0 0		0 0			0 0			0 0	
	pH (TCLP - off) pH 1:5 soil:water	0.1 ph Units 0.1 ph Units	5 14	other Other		(0			0	1 2	Y		0		0			0			0	N N
Metals & Metalloids	Arsenic (Total) Cadmium Chromium (Total)	2 mg/kg 0.4 mg/kg 5 mg/kg	19 19 19	Other Other	3 to 5 7 to 8 3 to 5 7 to 8 3 to 5 7 to 8		2	Y Y Y	ND	3 Y 3 Y 3 Y	1 1 1	Y Y Y		0 0	69 to 104 85 to 108 87 to 103	3 3 3	N Y Y		0 0		8 59	2 2 2	Y Y N
	Copper Lead	5 mg/kg 5 mg/kg	19 19	Other Other	3 to 5 7 to 8 3 to 5 7 to 8	/ 105 to 117 / 109 to 114	2	Y Y Y	ND ND	3 Y 3 Y	0 1	Y		0	88 to 107 101 to 301	3	Y N		0		26 30	2	Y
	Mercury (Inorganic) Nickel Zinc	0.1 mg/kg 5 mg/kg 5 mg/kg	19 19 19	Other	3 to 5 7 to 8 3 to 5 7 to 8 3 to 5 7 to 8	/ 107 to 118	2	Y Y	ND	3 Y 3 Y 3 Y	1 1 0 1	Y Y Y		0 0 0	101 to 120 95 to 102 13 to 111	3	Y Y N		0 0		79 14	2 2	N Y
	4,4-DDE Aldrin	0.05 mg/kg 0.05 mg/kg	14 14	SVOC SVOC	3 to 5 7 to 8 3 to 5 7 to 8	/ 88 to 99 / 90 to 103	2 2	Y		2 Y 2 Y	1 1	Y		0	90 to 108 94 to 101	2 2	Y		0			2 2	Y
	Aldrin + Dieldrin (Sum of Total) alpha-BHC beta-BHC	0.05 mg/kg 0.05 mg/kg 0.05 mg/kg	14 14 14	SVOC SVOC	0 to 1 7 to 8 3 to 5 7 to 8 3 to 5 7 to 8	/ 92 to 105		Y	ND ND	0 2 Y 2 Y	0 1 1	N Y Y		0 0 0	96 to 103 91 to 97	0 2 2	Y Y		0 0 0		= =	2 2 2	Y
	Chlordane DDD DDT	0.1 mg/kg 0.05 mg/kg	14 14 14	SVOC SVOC	3 to 5 7 to 8 3 to 5 7 to 8 3 to 5 7 to 8 3 to 5 7 to 8	/ / 101 to 113	0	Y	ND ND	2 Y 2 Y 2 Y	1 1 1	Y Y Y		0 0	93 to 128 79 to 89	0 2 2	Y		0 0			2 2 2	Y
	DDT+DDE+DDD (Sum of Total) delta-BHC	0.05 mg/kg 0.05 mg/kg 0.05 mg/kg	14 14	SVOC SVOC	0 to 1 7 to 8 3 to 5 7 to 8	/ / 91 to 117	0 2	Υ	ND	0 2 Y	0	N Y Y		0	105 to 106	0 2	Υ		0		$\equiv \equiv$	2 2 2	Y Y Y
	Dieldrin Endosulfan alpha Endosulfan beta	0.05 mg/kg 0.05 mg/kg 0.05 mg/kg	14 14 14	SVOC SVOC	3 to 5 7 to 8 3 to 5 7 to 8 3 to 5 7 to 8	/ 91 to 97 / 89 to 95	2 2	Y	ND ND	2 Y 2 Y 2 Y	0 1	N Y		0 0	89 to 106 87 to 105 91 to 109	2 2	Y Y Y		0 0			2 2 2	Y
	Endosulfan sulphate Endrin Endrin aldehyde	0.05 mg/kg 0.05 mg/kg 0.05 mg/kg	14 14 14	SVOC SVOC	3 to 5 7 to 8			Y Y Y	ND ND	2 Y 2 Y 2 Y	1 1 1	Y Y Y		0 0 0	92 to 111 90 to 96 82 to 116	2 2 2	Y Y Y		0 0			2 2 2	
	Endrin ketone Heptachlor Heptachlor Epoxide	0.05 mg/kg 0.05 mg/kg 0.05 mg/kg	14 14 14	SVOC	3 to 5 7 to 8 3 to 5 7 to 8 3 to 5 7 to 8	77 to 77 73 to 87	2 2 2	Y	ND ND ND	2 Y 2 Y 2 Y	1 1 1	Y Y Y		0 0	85 to 111 92 to 95 90 to 104	2 2 2	Y Y Y		0 0		=	2 2 2	Y
	Lindane Methoxychlor	0.05 mg/kg 0.05 mg/kg	14 14 14	SVOC SVOC	3 to 5 7 to 8 3 to 5 7 to 8 3 to 5 7 to 8	/ 96 to 109 / 72 to 82		Y Y	ND ND	2 Y 2 Y 2 Y	1 1	Y Y Y		0 0	101 to 111 79 to 100	2 2 0	Y Y		0			2 2 2	Y
Other	Toxaphene % Clay	1 mg/kg	14	Other	5 to 6 7 to 8	/ 86 to 96		Y	ND	2 Y	19 1	Υ		0		0			0			0	N
	% Moisture 103oC Total Organic Carbon	1 %	14 14	Other	0 to 1 7 to 8 5 to 6 7 to 8	/ 96 to 100		Y	ND	0 2 Y	8 1 12 1	Y		0		0			0		35	0	
1 2	Aroclor 1016 Aroclor 1221 Aroclor 1232	0.1 mg/kg 0.1 mg/kg 0.1 mg/kg	14 14 14	SVOC	3 to 5 7 to 8 3 to 5 7 to 8 3 to 5 7 to 8	/	0		ND	2 Y 2 Y 2 Y	1 1	Y		0 0		0 0			0 0			1 1	Y Y Y
	Aroclor 1242 Aroclor 1248 Aroclor 1254	0.1 mg/kg 0.1 mg/kg	14 14 14	SVOC SVOC		((0		ND ND	2 Y 2 Y	1 1 1	Y		0 0		0 0			0 0			1 1	Y
	Aroclor 1260 PCBs (Total)	0.1 mg/kg 0.1 mg/kg 0.1 mg/kg	14 14 14		3 to 5 7 to 8 3 to 5 7 to 8 3 to 5 7 to 8	71 to 89		Y	ND	2 Y 2 Y 2 Y	1 0	Y N		0	84 to 84	2	Y		0			1	
Polycyclic Aromatic Hydrocarbons	Acenaphthene Acenaphthylene	0.5 mg/kg 0.5 mg/kg	19 19	SVOC SVOC	3 to 5 7 to 8 3 to 5 7 to 8	/ 101 to 107	2 2			2 Y 2 Y	1 1	Y		0	102 to 109 116 to 122	3	Y Y		0			2	
	Anthracene Benz(a)anthracene Benzo(a)pyrene	0.5 mg/kg 0.5 mg/kg 0.5 mg/kg	19 19 19	SVOC SVOC SVOC	3 to 5 7 to 8 3 to 5 7 to 8 3 to 5 7 to 8	76 to 104 81 to 104 90 to 105	2 2 2	Y Y Y	ND ND ND	2 Y 2 Y 2 Y	1 1	Y Y Y		0 0	77 to 125 97 to 120 102 to 129	3 3 3	Y Y Y		0 0			2 2 2	Y Y Y
	Benzo(a)pyrene TEQ (lower bound* Benzo(a)pyrene TEQ (medium bound*	0.5 mg/kg 0.5 mg/kg	14 14	SVOC	0 to 1 7 to 8 0 to 1 7 to 8	((0			0	0	N N		0		0			0		0	2	Y
	Benzo(a)pyrene TEQ (upper bound ¹ Benzo(b,j)fluoranthene Benzo(g,h,i)perylene	0.5 mg/kg 0.5 mg/kg 0.5 mg/kg	14 19 19	SVOC SVOC	3 to 5 7 to 8	/ 84 to 93	2	Y	ND ND	0 2 Y 2 Y	0 1 1	N Y Y		0 0	99 to 115 109 to 128	3	Y Y		0 0		0	2 2 2	Y
	Benzo(k)fluoranthene Chrysene Dibenz(a.h)anthracene	0.5 mg/kg 0.5 mg/kg 0.5 mg/kg	19 19 19	SVOC	3 to 5 7 to 8 3 to 5 7 to 8 3 to 5 7 to 8			Y Y Y	ND	2 Y 2 Y 2 Y	1 1	Y		0 0	101 to 112 96 to 129 91 to 127	3 3	Y Y Y		0			2 2 2	Y
	Fluoranthene Fluorene Indeno(1,2,3-c,d)pyrene	0.5 mg/kg 0.5 mg/kg 0.5 mg/kg	19 19 19		3 to 5 7 to 8 3 to 5 7 to 8 3 to 5 7 to 8			Y Y Y		2 Y 2 Y 2 Y	1 1 1	Y Y Y		0 0	106 to 128 114 to 117 92 to 126	3 3 3	Y Y Y		0 0			2 2 2	Y Y Y
	Naphthalene PAHs (Total) Phenanthrene	0.5 mg/kg 0.5 mg/kg	33 19 19	VOC SVOC	3 to 5 7 to 8 0 to 4 7 to 8 3 to 5 7 to 8	/ 81 to 97	4 0	Υ	ND	4 Y 0 2 Y	1 0	N Y		0 0	94 to 126	5 0 3	Y		0 0			2 2	Y
	Pyrene	0.5 mg/kg 0.5 mg/kg	19	SVOC	3 to 5 7 to 8	/ 98 to 99				2 Y	1	Y		0	107 to 128	3	Ÿ		0			2	Y
Surrogate	4-Terphenyl-d14 Surrogate 2-fluorobiphenyl Surrogate 4-BFB		0	SVOC SVOC VOC		((0			0	0 0 0	N N N	78 to 136 63 to 136	21 N 21 N 16 N		0			0			0	N N
	Surrogate Dibutylchlorendate Surrogate TCMX		0	SVOC		(0			0	0	N N		16 N 16 N		0			0			0	N N
TPHs (NEPC 1999)	C10-C14 Fraction C10-C36 Fraction (Total) C15-C28 Fraction	20 mg/kg 50 mg/kg 50 mg/kg	14 14 14		3 to 5 7 to 8 0 to 1 7 to 8 3 to 5 7 to 8		0 0	Y		2 Y 0 2 Y	0 0	N N		0 0	86 to 94	0 0	Y		0		89	2 2 2	N Y
	C29-C36 Fraction C6-C9 Fraction	50 mg/kg 20 mg/kg	14 14		3 to 5 7 to 8 3 to 5 7 to 8		2	Y	ND	2 Y 2 Y	0	N Y		0	116 to 128	2	Υ		0		89	2	N Y
	>C10-C16 Fraction >C10-C16 less Naphthalene (F2)	50 mg/kg 50 mg/kg	14 14		3 to 5 7 to 8 0 to 1 7 to 8	/	0	Y		2 Y 0	0 0	N N		0	80 to 99	0	Υ		0		46	2	Y Y Y
	>C16-C34 Fraction >C34-C40 Fraction C6-C10 Fraction	100 mg/kg 100 mg/kg 20 mg/kg	14 14 14	SVOC VOC	3 to 5 7 to 8 3 to 5 7 to 8 3 to 5 7 to 8	/ / 118 to 122	0 0 2	Y	ND ND	2 Y 2 Y 2 Y	0	N N Y		0 0	113 to 126	0 0 2	Υ		0 0		46	2 2 2	Y
BTEX	C6-C10 less BTEX (F1) Benzene	20 mg/kg	0	VOC	0 to 1 7 to 8		0	Y		0	0	N		0		0	Y	ND	0	Y		2	Y N
	Ethylbenzene Toluene Xylene (m & p)		0		0101 /100	91 to 106				2 Y	0	N		0	82 to 100	3			3			0	
	Xylene (o) Xylene (Total)			VOC VOC	0 to 1 7 to 8 0 to 1 7 to 8 0 to 1 7 to 8 0 to 1 7 to 8	/ 89 to 101 / 89 to 108	2	Y Y Y	ND ND	2 Y 2 Y 2 Y 2 Y		N N N		0 0 0 0 0 0	82 to 100 79 to 110 80 to 110 80 to 110	3 3 3	Y Y Y	ND ND	3 3 3	Y		0 0 0	N N
Chlorinated Benzenes	Hexachlorobenzene		0	VOC VOC	0 to 1 7 to 8 0 to 1 7 to 8	7 89 to 101 7 89 to 108 7 88 to 113 7 88 to 88	2 2 2 1	Y	ND ND ND ND	2 Y 2 Y	0 0	N N		0	79 to 110 80 to 110	3	Υ	ND ND ND		Y		0	N N
EPA VIC - IWRG621			0 0	VOC VOC VOC VOC	0 to 1 7 to 8 0 to 1 7 to 8	7 89 to 101 7 89 to 108 7 88 to 113 7 88 to 88 7 88 to 110	2 2 2 1 2	Y Y Y	ND ND ND ND ND	2 Y 2 Y 2 Y 2 Y 2 Y 0	0 0 0 0 0 0 0	N N N N		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	79 to 110 80 to 110 80 to 110 81 to 110	3 3 3 3 3	Y Y Y	ND ND ND ND ND	3 3 3	Y Y Y Y		0 0 0 0 0	N N N N
	Organochlorine Pesticides EPAVic Other Organochlorine Pesticides EPAVic		0 0 0	VOC VOC VOC VOC SVOC	0 to 1 7 to 8 0 to 1 7 to 8 5 7	7 89 to 101 7 89 to 108 8 to 108 8 to 13 7 88 to 88 7 88 to 110 7	2 2 2 1 2 0 0	Y Y Y	ND ND ND ND ND ND	2 Y 2 Y 2 Y 2 Y 2 Y 0 0	0 0 0 0 0 0 0 0	N N N N N N		0 0 0 0 0 0 0	79 to 110 80 to 110 80 to 110 81 to 110 81 to 110 80 to 110	3 3 3 3 3 0	Y Y Y	ND N	3 3 3	Y Y Y Y Y Y Y Y Y		0 0 0 0 0 0	N N N N N
	Organochlorine Pesticides EPAVic Other Organochlorine Pesticides EPAVic Arsenic (Total) Cadmium (Total)		0 0	VOC VOC VOC VOC SVOC SVOC SVOC Other Other	0 to 1 7 to 8 0 to 1 7	/ 89 to 101 / 89 to 108 / 88 to 113 / 88 to 113 / 88 to 110 / 88 to 110 / 103 to 103 / 99 to 99 / 100 to 100	2 2 2 1 2 0 0 0	Y Y Y	ND ND ND ND ND ND	2 Y 2 Y 2 Y 2 Y 2 Y 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	N N N N N N N N		0 0 0 0 0 0 0 0 0	79 to 110 80 to 110 80 to 110 81 to 110 81 to 110 80 to 110 90 to 109 97 to 97 98 to 98	3 3 3 3 3 0 0 0	Y Y Y Y	ND N	3 3 3 3 3 1	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y		0 0 0 0 0 0	N N N N N N N
Metais & Metalloids	Organochlorine Pesticides EPAVic Other Organochlorine Pesticides EPAVic Arsenic (Total) Cadmium		0 0 0 0 0 0	VOC VOC VOC VOC VOC SVOC SVOC SVOC Other Other Other Other Other Other	0 to 1 7 to 8 0 to 1 7	7 89 to 101 89 to 108 7 88 to 113 7 88 to 88 7 88 to 88 8 to 110 7 103 to 103 7 99 to 99 7 100 to 100 7 96 to 96 7 104 to 104 7 96 to 96	2 2 2 2 1 1 2 0 0 0 0 1 1 1 1 1 1 1	Y Y Y Y	ND N	2 Y 2 Y 2 Y 2 Y 2 Y 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	N N N N N N N N N N N N N N N N N N N		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	79 to 110 80 to 110 80 to 110 80 to 110 81 to 110 80 to 110 80 to 110 90 to 109 97 to 97 98 to 98 97 to 97 105 to 105 95 to 95	3 3 3 3 3 3 0 0 0 0 1 1 1 1 1	Y Y Y Y Y Y Y Y	ND N	3 3 3 3 3 3 1 1	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y		0 0 0 0 0 0	N N N N N N N N N N N N N N N N N N N
Metals & Metalloids	Organochlorine Pesticides EPAVic Other Organochlorine Pesticides EPAVic Arsenic (Total) Cadmium Chromium (Total) Copper		0 0 0 0 0 0 0 0 0	VOC VOC VOC VOC SVOC SVOC SVOC Other Other Other Other Other	0 to 1 7 to 8 0 to 1 7	7 89 to 101 89 to 108 7 88 to 113 7 88 to 88 7 88 to 88 8 to 110 7 103 to 103 7 99 to 99 7 100 to 100 7 96 to 96 7 104 to 104 7 96 to 96	2 2 2 1 1 2 0 0 0 1 1 1 1 1 1 1 1 1 1 1	Y Y Y Y	ND N	2 Y 2 Y 2 Y 2 Y 2 Y 2 Y 2 Y 2 Y 2 Y 1 Y 2 Y 1 Y 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	N N N N N N N N N N N N N N N N N N N		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	79 to 110 80 to 110 80 to 110 81 to 110 81 to 110 80 to 110 80 to 110 109 to 100 97 to 97 98 to 98 97 to 97 105 to 105	3 3 3 3 3 0 0 0 1 1 1 1	Y Y Y Y Y Y Y Y	ND N	3 3 3 3 3 1 1 1 1 1 1 1	Y Y Y Y Y Y Y Y Y		0 0 0 0 0 0 0	N N N N N N N N N N N N N N N N N N N
Metals & Metalloids Organochlorine Pesticides	Organochlorine Pesticides EPAVic Other Organochlorine Pesticides EPAVic Arsenic (Total) Cadmium Chromium (Total) Copper Leed Mercury (Inorganic) Nickel 4.4-DDE Aldrin		0 0 0 0 0 0 0 0 0 0 0	VOC	0 to 1 7 to 8 to 17 to 18 to 1	## 89 to 101 ## 89 to 101 ## 89 to 103 ## 88 to 113 ## 88 to 113 ## 88 to 113 ## 88 to 110 ## 103 to 103 ## 103 to 103 ## 100 to 100 ## 100 to	2 2 2 1 1 2 0 0 0 0 1 1 1 1 1 1 1 1 1 1	Y Y Y Y Y Y Y Y	ND N	2 Y Y 2 Y Y 2 Y Y 2 Y Y 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	N N N N N N N N N N N N N N N N N N N		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	79 to 110 80 to 110 80 to 110 81 to 110 81 to 110 80 to 110 80 to 110 80 to 100 90 to 100 97 to 97 98 to 98 97 to 97 105 to 105 95 to 95 98 to 98	3 3 3 3 3 3 3 0 0 0 0 1 1 1 1 1 1 1 1	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	ND N	3 3 3 3 3 1 1 1 1 1 1 1 1 1	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	N N N N N N N N N N N N N N N N N N N
Metals & Metalloids Organochlorine Pesticides	Organochlorine Pesticides EPAVic Other Organochlorine Pesticides EPAVic Arsenic (Total) Cadrisum Cadrisum Copper Copper Leed Mercury (Inorganic) Nickel Zinc 4.4-DDE Addris — Deldrin (Sum of Total) alpha-BHC Jeber BHC		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	VOC	0 to 1 7 to 8 to 1 7 to	## 89 to 101 ## 89 to 101 ## 89 to 103 ## 88 to 113 ## 88 to 113 ## 88 to 110 ## 103 to 103 ## 103 to 103 ## 103 to 103 ## 103 to 103 ## 100 to 100 ## 100 t	2 2 2 1 1 2 0 0 0 0 1 1 1 1 1 1 1 1 1 1	Y Y Y Y Y Y Y Y	ND N	2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	N N N N N N N N N N N N N N N N N N N		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	79 to 110 80 to 110 80 to 110 81 to 110 81 to 110 80 to 110 80 to 110 80 to 100 90 to 100 97 to 97 98 to 98 97 to 97 105 to 105 95 to 95 98 to 98	3 3 3 3 3 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	ND N	3 3 3 3 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	N N N N N N N N N N N N N N N N N N N
Metals & Metalloids Organochlorine Pesticides	Organochlorine Pesticides EPAVic Other Organochlorine Pesticides EPAVic Other Organochlorine Pesticides EPAVic Assanic (Total) Cadmiun Chromium (Total) Copper Lead Mercury (Inorganic) Nickel Zinc Addrin - Dieldrin (Sum of Total) alpha-BHC Debat-BHC Collection		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	VOC	0 to 1 7 to 8 0 to 1 7 to 9 0 to 1 7 to 9	(89 to 101 (89 to 108	2 2 2 1 1 2 0 0 0 0 1 1 1 1 1 1 1 1 1 1	Y Y Y Y Y Y Y Y Y	ND N	2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	N N N N N N N N N N N N N N N N N N N		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	79 to 110 80 to 110 80 to 110 81 to 110 81 to 110 80 to 110 80 to 110 80 to 100 90 to 100 97 to 97 98 to 98 97 to 97 105 to 105 95 to 95 98 to 98	3 3 3 3 3 3 3 0 0 0 0 1 1 1 1 1 1 1 1 1	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	ND N	3 3 3 3 3 3 1 1 1 1 1 1 1 1 1 1 1 1	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	N N N N N N N N N N N N N N N N N N N
Metals & Metalloids Organochlorine Pesticides	Organochlorine Pesticides EPAVic Other Organochlorine Pesticides EPAVic Arsenic (Total) Cadirium Cadirium Copper Copper Lead Mercury (Inorganic) Nickel Zinc 4.4-DDE Advin — Dieldrin (Sum of Total) alpha=BHG Lead Lead Lead Lead Lead Lead Lead Lead		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	VOC	0 to 1 7 to 8 to 17 to 18	(89 to 101 (89 to 108	2 2 2 1 2 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0	Y Y Y Y Y Y Y Y Y	ND N	2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	N N N N N N N N N N N N N N N N N N N		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	79 to 110 80 to 110 80 to 110 81 to 110 81 to 110 80 to 110 80 to 110 80 to 100 90 to 100 97 to 97 98 to 98 97 to 97 105 to 105 95 to 95 98 to 98	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	ND N	3 3 3 3 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	N N N N N N N N N N N N N N N N N N N
Metals & Metalloids Organochlorine Pesticides	Organochlorine Pesticides EPAVic Other Organochlorine Pesticides EPAVic Arsenic (Total) Caderium Chromium (Total) Copper Copper Mercury (Inorganic) Nickel Zinc 4,4-DDE Aldrin - Dieldrin (Sum of Total) alpha-BHC Chlordane DOT*+DDE+DDD (Sum of Total) delta-BHC Dieldrin Endosulfan alpha		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	VOC	1	(89 to 101 (89 to 108	2 2 2 2 2 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2	Y Y Y Y Y Y Y Y Y	ND N	2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	N N N N N N N N N N N N N N N N N N N		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	79 to 110 80 to 110 80 to 110 81 to 110 81 to 110 80 to 110 80 to 110 80 to 100 90 to 100 97 to 97 98 to 98 97 to 97 105 to 105 95 to 95 98 to 98	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	ND N	3 3 3 3 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	N N N N N N N N N N N N N N N N N N N
Metals & Metalloids Organochlorine Pesticides	Organochlorine Pesticides EPAVic Other Organochlorine Pesticides EPAVic Arsenic (Total) Cadrisum Cadrisum Copper Copper Leed Mercury (Inorganic) Nickel Zinc 4.4-DDE Addris — Deldrin (Sum of Total) Alpha-BHC Debet-BHC Colordane DDT DDT DDT+DDE+DDD (Sum of Total) DDT+DDE+DDD (Sum of Total) Getta-BHC Dobetin (Sum of Total) DDT DDT-DDE+DDD (Sum of Total) Getta-BHC Dobetin (Sum of Total) Getta-BHC Drive (Sum of Total) Getta-BHC Drive (Sum of Total) Getta-BHC Endosulfan sigha Endosulfan sigha Endosulfan sughate		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	VOC	1	(89 to 101 (89 to 108	2 2 2 2 1 2 2 2 1 1 2 2 2 1 1 1 1 1 1 1	Y Y Y Y Y Y Y Y Y	ND N	2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	N		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	79 to 110 80 to 110 80 to 110 81 to 110 81 to 110 80 to 110 80 to 110 80 to 100 90 to 100 97 to 97 98 to 98 97 to 97 105 to 105 95 to 95 98 to 98	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	NID	3 3 3 3 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	N N N N N N N N N N N N N N N N N N N
Metals & Metalloids Organochlorine Pesticides	Organochlorine Pesticides EPAVic Other Organochlorine Pesticides EPAVic Other Organochlorine Pesticides EPAVic Astanic (Total) Cadminum Cadminum Corper Corp		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	VOC	Ob 7 to 8	(89 to 101 to 10 89 to 108 to	2 2 2 2 2 1 1 2 2 1 2 2 1 1 1 1 1 1 1 1	Y Y Y Y Y Y Y Y Y	ND N	2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	N N N N N N N N N N		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	79 to 110 80 to 110 80 to 110 81 to 110 81 to 110 80 to 110 80 to 110 80 to 100 90 to 100 97 to 97 98 to 98 97 to 97 105 to 105 95 to 95 98 to 98	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	ND N	3 3 3 3 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	N N N N N N N N N N N N N N N N N N N
Metals & Metalloids Organochlorine Pesticides	Organochlorine Pesticides EPAVic Other Organochlorine Pesticides EPAVic Other Organochlorine Pesticides EPAVic Arsenic (Total) Cadrisum Chronium (Total) Chronium (Total) Chronium (Total) Lead Mercury (Inorganic) Nickel Zinc 4.4-DDE Addrin - Dieldrin (Sum of Total) Addrin - Dieldrin (Sum of Total) Addrin - Dieldrin (Sum of Total) Diels-BHC Othordane ODD DOT DDT-DDE+DDD (Sum of Total) delta-BHC Dieldrin - Endosuffan alpha Endosuffan beta Endosuffan beta Endosuffan beta Endosuffan subpate Endrin alebyate Endrin elebyde Endrin kelone		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	VOC	1	(89 to 101 (89 to 108	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Y Y Y Y Y Y Y Y Y	ND N	2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	N		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	79 to 110 80 to 110 80 to 110 81 to 110 81 to 110 80 to 110 80 to 110 80 to 100 90 to 100 97 to 97 98 to 98 97 to 97 105 to 105 95 to 95 98 to 98	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	NID	3 3 3 3 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	N N N N N N N N N N N N N N N N N N N
Metals & Metalloids Organochlorine Pesticides Pelycyclic Aromatic Hydrocarbons	Organochlorine Pesticides EPAVic Other Organochlorine Pesticides EPAVic Other Organochlorine Pesticides EPAVic Assanic (Total) Cadmium Cadmium Chromium (Total) Copper Lead Mercury (Inorganic) Nickel Zinc Zinc Addrin + Dieldrin (Sum of Total) alpha-BHC beta-BHC Debeta-BHC Chlordiane Chlordiane ODT ODT+DDDE+DDD (Sum of Total) delta-BHC Deldrin (Sum of Total) endelta-BHC Deldrin (Sum of Total) endelta		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	VOC	Ob 7 to 8	(89 to 101 (89 to 108	2 2 2 2 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1	Y Y Y Y Y Y Y Y Y	ND N	2		N N N N N N N N N N		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	79 to 110 80 to 110 80 to 110 80 to 110 81 to 100 81 to	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	ND	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	N N N N N N N N N N N N N N N N N N N
Metals & Metalloids Organochlorine Pesticides Organochlorine Pesticides	Organochlorine Pesticides EPAVic Other Organochlorine Pesticides EPAVic Other Organochlorine Pesticides EPAVic Arsenic (Total) Copper Coderium Mercury (Total) Copper Lead Mercury (Inorganic) Nickel Zinc 4.4-DDE Addrin - Dieldrin (Sum of Total) Addrin - Dieldrin (Sum of Total) Dieldrin - Dieldrin (Sum of Total) DIE-DBE-DBC ODD DOT DDT-DBE-DDD (Sum of Total) delta-BHC Dieldrin - Dield		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	VOC	1	(89 to 101 (89 to 108	2 2 2 2 2 1 1 2 2 0 0 0 0 0 0 0 0 0 0 0	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	ND N	2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	N N N N N N N N N N		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	79 to 110 80 to 110 80 to 110 80 to 110 81 to	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	NID	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	N N N N N N N N N N N N N N N N N N N
Metals & Metalloids Organochlorine Pesticides Organochlorine Pesticides	Organochlorine Pesticides EPAVic Other Organochlorine Pesticides EPAVic Arsenic (Total) Arsenic (Total) Copper Cop		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	VOC	Ob 7 to 8	(89 to 101 (89 to 108 to 109	2 2 2 2 2 1 1 2 2 1 1 1 2 1 1 1 1 1 1 1	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	ND N	2		N N N N N N N N N N			79 to 110 80 to 110 80 to 110 80 to 110 81 to	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	NID	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	N N N N N N N N N N N N N N N N N N N
Metals & Metalloids Organochlorine Pesticides Organochlorine Pesticides Pelycyclic Aromatic Hydrocarbons	Organochlorine Pesticides EPAVic Other Organochlorine Pesticides EPAVic Other Organochlorine Pesticides EPAVic Astanic (Total) Cadmiun Cadmiun Cadmiun Copper Coppe			VOC	Ob 7 to 8 Ob 7 to 8 Ob 7 to 8 Ob 7 to 8 Ob 1 7 to 8 Ob 1 7 to 8 Ob 1 7 to 8 Ob	(89 to 101 (89 to 108 to 108 to 109 to 108	2 2 2 2 2 2 1 1 2 2 2 2 2 2 2 2 2 2 2 2	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	ND N	2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	N N N N N N N N N N		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	79 to 110 80 to 110 80 to 110 80 to 110 81 to	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	NID	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	N N N N N N N N N N N N N N N N N N N
Metals & Metalloids Organochlorine Pesticides Organochlorine Pesticides Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides EPAVic Other Organochlorine Pesticides EPAVic Altsenic (Total) Altsenic (Total) Altsenic (Total) Copper Coppe		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	VOC	Ob 7 to 8	(89 to 101 (89 to 103	2 2 2 2 2 1 1 2 2 2 2 2 1 1 2 2 2 2 2 2	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	ND N	2		N N N N N N N N N N			79 to 110 80 to 110 80 to 110 80 to 110 81 to 110 80 to 110 81 to 110 80 to 110 80 to 110 80 to 110 97 to 97 80 to 98 91 to 97 91 to 97 90 to 98 91 to 98 106 to 106 91 to 106 9	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	NID	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	N N N N N N N N N N N N N N N N N N N
Metals & Metalloids Organochlorine Pesticides Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides EPAVic Other Organochlorine Pesticides EPAVic Other Organochlorine Pesticides EPAVic Assanic (Total) Cadmium Cadmium Chromium (Total) Copper Lead Mercury (Inorganic) Nickel Zinc Zinc Zinc Zinc Zinc Zinc Zinc Zinc		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	VOC	Ob 7 to 8	(89 to 101 (89 to 108 to 109	2 2 2 2 2 1 1 2 2 2 2 2 1 1 2 2 2 2 2 2	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	ND N	2		N N N N N N N N N N		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	79 to 110 80 to 110 80 to 110 80 to 110 81 to 110 97 to 97 98 to 98 97 to 97 105 to 105 98 to 98 97 to 97 105 to 105 98 to 98 106 to 106 115 to 105 115 to 105 115 to 115 115 to 125 115 t	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	NID	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	N N N N N N N N N N N N N N N N N N N
Metals & Metalloids Organochlorine Pesticides Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides EPAVic Other Organochlorine Pesticides EPAVic Arsenic (Total) Cadrisum Copper (Total)			VOC	Ob 7 to 8	(89 to 101 (89 to 108 to 109	2 2 2 2 2 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	ND N	2		N N N N N N N N N N			79 to 110 80 to 110 80 to 110 80 to 110 81 to	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	NID	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	N N N N N N N N N N N N N N N N N N N
Metals & Metalloids Organochlorine Pesticides Organochlorine Pesticides Polycyclic Aromatic Hydrocarbons Surrogate	Organochlorine Pesticides EPAVic Other Organochlorine Pesticides EPAVic Altentic (Total) Altentic (Total) Copper C			VOC	Ob 7 to 8	(89 to 101 (89 to 108 to 109	2 2 2 2 2 1 1 2 2 2 2 2 1 1 2 2 2 2 2 2	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	ND N	2		N N N N N N N N N N	103 to 103 89 to 89 93 to 118	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	79 to 110 80 to 110 80 to 110 80 to 110 81 to	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	NID	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	N N N N N N N N N N N N N N N N N N N
Metals & Metalloids Organochlorine Pesticides Organochlorine Pesticides Polycyclic Aromatic Hydrocarbons Surrogate	Organochlorine Pesticides EPAVic Other Organochlorine Pesticides EPAVic Other Organochlorine Pesticides EPAVic Astanic (Total) Genium Corper C			VOC	Ob 7 to 8	(89 to 101 (89 to 108	2 2 2 2 2 1 1 2 2 2 2 2 1 1 2 2 2 2 2 2	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	ND N	2		N N N N N N N N N N	103 to 103 89 to 89 93 to 118	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	79 to 110 80 to 110 80 to 110 80 to 110 81 to 120 81 to 121 81 to	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	NID	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	N N N N N N N N N N N N N N N N N N N
Metals & Metalloids Organochlorine Pesticides Organochlorine Pesticides Polycyclic Aromatic Hydrocarbons Surrogate	Organochlorine Pesticides EPAVic Other Organochlorine Pesticides EPAVic Other Organochlorine Pesticides EPAVic Assanic (Total) Cadmium Cadmium Cadmium Copper Cadmium Copper Copper Lead Mercury (Inorganic) Nickel Zinc Zinc Zinc Zinc Zinc Zinc Zinc Zinc			VOC	Ob 7 to 8	(89 to 101 (89 to 108 to 109	2 2 2 2 2 1 1 2 2 2 2 2 1 1 2 2 2 2 2 2	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	ND N	2		N N N N N N N N N N	103 to 103 89 to 89 93 to 118 102 to 102 86 to 66	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	79 to 110 80 to 110 80 to 110 80 to 110 81 to	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	ND N	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	N N N N N N N N N N N N N N N N N N N
Metals & Metalloids Organochlorine Pesticides Organochlorine Pesticides Polycyclic Aromatic Hydrocarbons Surrogate TPHs (NEPC 1999)	Organochlorine Pesticides EPAVic Other Organochlorine Pesticides EPAVic Other Organochlorine Pesticides EPAVic Attanetic (Total) Geologium Geologi			VOC	Ob 7 to 8	(89 to 101 (89 to 108 to 109	2 2 2 2 2 2 1 1 2 2 2 2 2 1 1 2 2 2 2 2	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	ND N	2		N N N N N N N N N N	103 to 103 89 to 98 93 to 118 102 to 102 86 to 96	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	79 to 110 80 to 110 80 to 110 80 to 110 81 to 120 81 to 121 81 to	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	ND N	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	N N N N N N N N N N N N N N N N N N N
Metals & Metalloids Organochlorine Pesticides Organochlorine Pesticides Polycyclic Aromatic Hydrocarbons Surrogate TPHs (NEPC 1999)	Organochlorine Pesticides EPAVic Other Organochlorine Pesticides EPAVic Arsenic (Total) Arsenic (Total) Copper Cop			VOC	Ob 7 to 8	(89 to 101 (89 to 108 to 109	2 2 2 2 2 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	ND N	2		N	103 to 103 93 to 18 102 to 102 86 to 86	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	79 to 110 80 to 110 80 to 110 80 to 110 81 to 110 97 to 97 97 to 97 97 to 97 98 to 98 98 to 98 108 to 108 108 to 108 110 to 109 110 to 100 110 to 110 110	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	NID	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	N N N N N N N N N N N N N N N N N N N
Metals & Metalloids Organochlorine Pesticides Polycyclic Aromatic Hydrocarbons Surrogate TPHs (NEPC 1999)	Organochlorine Pesticides EPAVic Other Organochlorine Pesticides EPAVic Other Organochlorine Pesticides EPAVic Astanic (Total) Cadmium Cadmium Cadmium Cadmium Copper Cadmium Copper Copper Lead Mercury (Inorganic) Nickel Zinc Zinc Zinc Zinc Zinc Zinc Zinc Zinc			VOC	Ob 7 to 8	(89 to 101 (89 to 108 (89 to 108 (89 to 108 (89 to 108 (19 to 108 to 108 to 109	2 2 2 2 2 2 2 1 1 2 2 2 2 2 2 2 2 2 2 2	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	ND	2		N	103 to 103 89 to 99 93 to 118 102 to 102 86 to 86	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	79 to 110 80 to 110 80 to 110 80 to 110 81 to	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	ND	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	N N N N N N N N N N N N N N N N N N N

Appendix K Laboratory Documentation

CHAIN OF CUSTODY

PROJECT NO.: 52885							LAB	ORA	TOR	Y BA	TCH N	0.:						
PROJECT NAME: BOX ON	TOKUL ES	A 3.	Scho	011-0	weenuic	h	SAN	IPLE	RS:	50								
DATE NEEDED BY: ST D	TAT	2000000									(2013)						
PHONE: Sydney: 02 8245 030																_		
SEND REPORT & INVOICE TO	(1) admini	rsw@jbsg	.com.au;	(2) 5	mous @	jbsg.com.a	au; (3	3)\$	91	ai	·	@jb:	sg.com.ai	I M	well	260	5 650	g-eon au
COMMENTS / SPECIAL HANDLING / STOR	AGE OR DISPOSA	AL:						1		1							TYPE OF ASBESTOS	
							00	BIC	no	0	17						ANALYSIS	558877
							J82A	N(10	- 중	$ \tilde{n} $						CATION	220011
SAMPLE ID	MATRIX	DATE	TIME	TVD	& PRESERVATIVE	рН		-		3	700						IDENTIFICATION NEPM/WA	AVOTES
		16 18	THVIC			рн	×	+	4	7		+ + +					□ z	NOTES:
8HO1 0.05-0.15	SOIL	10 10	1	Day T	Jar tice		\vdash		7	-	7			-				
BHO2 0.1-0.2		1				-	4		44	1				_				<u> </u>
							*		1		7		+++	+				
8403 0.05-0.6 8403 0.05-0.15							1		+ +	1	1		+ + +	+	-			
0.2-0.3							+	+	L F		/~			\dashv				-
BH04 0.1-0.2		 	1			_	X	7	4	V	7		1	+				
7"								- '	7				+	-				
0.5-0.6				, ,			\vdash	+	+	+				_				
BH05 0-0.1		 					7	-	4	1	7		+ + +	+				
BH06 0.1-0.2							×		4		1		+ + +					
√ 0.6-0.7							-		+	-	/-							
BH07 0.1-0-2			ļ				7	+	IX	. 1	X	1	+					Ç.
BH08 0-1-0-2							1	_	4 ×	_	+			+				
1 0-3-0-4							1:		+	1			1 1 1					
. 0.8-0.9							,	\top	_	1								
BH09 0-1-0-2							+	1	4	4	X							
0.4-0.5				1				\top		1								
QA 20170816		1					7	X	\top	\top								
RELINOUISHED BY				METHOD	OF SHIPMENT:			0		RECEI	VED BY:	0.0041414			FOR	RECEIVI	NG LAB U	JSE ONLY(
NAME: Saray DATE: 19	618/1-	CON	SIGNMENT	NOTE NO.			NAN DAT	ME:	up	av	10	11:00	COOLER	SEAL-	Yes	No	Intact	Broken
OF: JBS&G	1010	TRAI	NSPORT CO.				OF:		1			16 08	COOLER	TEMP	deg	C		
NAME: DATE:			SIGNMENT	NOTE NO.			NAN	ME:				DATE:	COOLER	SEAL-	Yes	No	Intact .	Broken
OF:		TRA	NSPORT CO				OF:						COOLER	TEMP	deg	С		
Container & Preservative Codes: P = Pla	stic; J = Soil Jar;			Acid Prsvd.; C = 5	iodium Hydroxide Prsvd; V	C = Hydrochlor	ic Acid	Prsvd	Vial; V	S = Sul	furic Acio	l Prsvd Vial; S = S					A Prsvd; S	T = Sterile Bottle; O = Other
IMSO FormsO13 - Chain of Custody - Ge	eneric																	

CHAIN OF CUSTODY

PROJECT NO.: 5	3033						LAB	DRATO	DRY BATO	CH NO.:							
PROJECT NAME: COP	DIECT NO.: 570 53033 DIECT NAME: ESA 3 SCHOOLS - areenwich								S SG								
DATE NEEDED BY: STD	TAT						QCL	EVEL:	NEPM (2	2013)							
PHONE: Sydney: 02 8245 030	0 Perth: 0	8 9488 01	.00 Bris	bane: 07 31	112 2688										_		
SEND REPORT & INVOICE TO	(1) adminn	sw@jbsg.	com.au;	(2) Bbu	mows @jbs	g.com.	au; (3)		gravy		@jb	sg.com	.au ∩	mer	100	ibs	9.00m.au
COMMENTS / SPECIAL HANDLING / STOR	AGE OR DISPOSA	L:						, I I								TYPE OF ASBESTOS	
							E HE	5 7								ANALYSIS	
							- 1				1					ATION	
							BIEX	181								IDENTIFICATION NEPM/WA	
SAMPLE ID	MATRIX	DATE	TIME		E & PRESERVATIVE	рН	<u> </u>									NEP IDE	NOTES:
TB	WATER	2418		nals	4108		X										
T5	1	1		1	,		Y										
CBRO3	SOIL	16 (8		Bag.	+ Jay + ice			X									
						 								 			
								+				+ +-			\vdash		
						+-					+++					 	
				1		-					_	-	+	++-		-	
						-		+			+	+			++	-	
						-	-	-						+	-		
						ļ		\perp					\perp	 - - 		ļļ	4
											\perp	\perp					
		:															
					·												
					-							1.					
										\dashv	\top	11		1-1-			
								+									
						+	\vdash	+	+				++				
RELINQUISHED BY				METHOD	OF SHIPMENT:			0	RECEIVE	D BY:				FOR	RECEIVI	NG LAB I	JSE ONLY
414.45		CONS	IGNMENT		AL SHEDDEN.		NAM	1E: \ \ \ \	pau	17	00-	coo	LER SEAL				Broken
44009	6/8/1	7					DAT			1/	909						
OF: JDS&G	6 - 1	IRAN	SPORT CO.	NOTE NO			OF:	15.	15	DAT	-		LER TEMP			Intent	Broken
NAME: DATE:		CONS	IGNMENT	NOTE NO.			NAN OF:	IC:		DAT	c:	COO	TEK DEAL	- 165	140	medet	DIUREII
OF:			SPORT CO										LER TEMP				
Container & Preservative Codes: P = Pla		B = Glass Bottl	e; N = Nitric	Acid Prsvd.; C =	Sodium Hydroxide Prsvd; VC = I	lydrochlo	ric Acid I	rsvd Via	l; VS = Sulfu	ric Acid Prs	/d Vial; S =	Sulfuric A	id Prsvd; Z	= Zinc Prs	/d; E = ED1	A Prsvd; S	T = Sterile Bottle; O = Other

Melbourne Melbourne
3-5 Kingston Town Close
Oakleigh Vic 3166
Phone: +61 3 8564 5000
NATA # 1261
Site # 1254 & 14271

Unit F3, Building F 1/21 Smallwood Place 16 Mars Road Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Perth Z/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

ABN - 50 005 085 521

e.mail: EnviroSales@eurofins.com

web: www.eurofins.com.au

Sample Receipt Advice

Company name: JBS & G Australia (NSW) P/L

Contact name: Scott Burrows

ESA 3 SCHOOLS - GREENWICH Project name:

Project ID: 52885

COC number: Not provided

Turn around time: 5 Day

Aug 16, 2017 5:00 PM Date/Time received:

Eurofins | mgt reference: 558877

Sample information

- \mathbf{V} A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- \mathbf{V} Sample Temperature of a random sample selected from the batch as recorded by Eurofins | mgt Sample Receipt : 22.5 degrees Celsius.
- \mathbf{V} All samples have been received as described on the above COC.
- \square COC has been completed correctly.
- \square Attempt to chill was evident.
- \mathbf{V} Appropriately preserved sample containers have been used.
- \mathbf{V} All samples were received in good condition.
- \square Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- \mathbf{V} Appropriate sample containers have been used.
- \mathbf{V} Sample containers for volatile analysis received with zero headspace.
- \boxtimes Some samples have been subcontracted.
- N/A Custody Seals intact (if used).

Contact notes

If you have any questions with respect to these samples please contact:

Nibha Vaidya on Phone: +61 (2) 9900 8400 or by e.mail: NibhaVaidya@eurofins.com

Results will be delivered electronically via e.mail to Scott Burrows - SBurrows@jbsg.com.au.

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

558877

Sydney
Unit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 9900 8400
NATA # 1261 Site # 18217

Brisbane I/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Received:

Priority:

Due:

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Aug 16, 2017 5:00 PM

Aug 23, 2017

5 Day

JBS & G Australia (NSW) P/L **Company Name:**

Address: Level 1, 50 Margaret St

> Sydney NSW 2000

Project Name: **ESA 3 SCHOOLS - GREENWICH**

Project ID: 52885

Report #: Phone: 02 8245 0300

Order No.:

Fax:

Contact Name: Scott Burrows

		Sa	mple Detail			% Clay	Asbestos - WA guidelines	HOLD	pH (1:5 Aqueous extract)	Total Organic Carbon	Moisture Set	Cation Exchange Capacity	BTEXN and Volatile TRH	JBS&G Suite 2	
Melk	ourne Laborato	ory - NATA Site	# 1254 & 142	271				Х	Х	Х	Х	Х	Х	Х	
Sydi	ney Laboratory	- NATA Site # 1	8217										Х	Х	
Bris	bane Laborator	y - NATA Site #	20794			Х									
Pert	h Laboratory - N	NATA Site # 237	'36				Х								
Exte	rnal Laboratory				-										
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID										
1	BH01_0.05- 0.15	Aug 16, 2017		Soil	S17-Au19518	х	х		x	х	X	х		x	
2	BH02_0.1-0.2	Aug 16, 2017		Soil	S17-Au19519	Х	Х		Х	Х	Х	Х		Х	
3	BH03_0.05- 0.15	Aug 16, 2017		Soil	S17-Au19520	х	х		Х	х	х	х		х	
4	BH04_0.1-0.2	Aug 16, 2017		Soil	S17-Au19521	Х	Х		Х	Х	Х	Х		Х	
5	BH05_0-0.1	Aug 16, 2017		Soil	S17-Au19522	Х	Х		Х	Х	Х	Х		Х	
6	BH06_0.1-0.2	Aug 16, 2017		Soil	S17-Au19523	Х	Х		Х	Х	Х	Х		Х	
7	BH07_0.1-0.2	Aug 16, 2017		Soil	S17-Au19524	Х	Х		Х	Х	Х	Х		Х	
8	BH08_0.1-0.2	Aug 16, 2017		Soil	S17-Au19525	Х	Х		Х	Х	Х	Х		Х	

Order No.:

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney
Unit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 9900 8400
NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Received:

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Aug 16, 2017 5:00 PM

Company Name: JBS & G Australia (NSW) P/L

Address: Level 1, 50 Margaret St

Sydney NSW 2000

Project Name: ESA 3 SCHOOLS - GREENWICH

Project ID: 52885

 Report #:
 558877
 Due:
 Aug 23, 2017

 Phone:
 02 8245 0300
 Priority:
 5 Day

Fax: Contact Name: Scott Burrows

		Samp	ole Detail		% Clay	Asbestos - WA guidelines	HOLD	pH (1:5 Aqueous extract)	Total Organic Carbon	Moisture Set	Cation Exchange Capacity	BTEXN and Volatile TRH	JBS&G Suite 2
Mell	oourne Laborate	ory - NATA Site # 1	254 & 14271				Х	Х	Х	Х	Х	Х	Х
Syd	ney Laboratory	- NATA Site # 182	17									Х	Х
		y - NATA Site # 20			Х								
Pert	h Laboratory - N	NATA Site # 23736				Х							
9	BH09_0.1-0.2	Aug 16, 2017	Soil	S17-Au19526	Х	Х		Х	Х	Х	Х		Х
10	QA20170816	Aug 16, 2017	Soil	S17-Au19527						Х			Х
11	ТВ	Aug 16, 2017	Water	S17-Au19528								Х	
12	TS	Aug 16, 2017	Water	S17-Au19529								Х	
13	BH01_0.2-0.3	Aug 16, 2017	Soil	S17-Au19530			Х						
14	BH02_0.5-0.6	Aug 16, 2017	Soil	S17-Au19531			Х						
15	BH03_0.2-0.3	Aug 16, 2017	Soil	S17-Au19532			Х						
16	BH04_0.5-0.6	Aug 16, 2017	Soil	S17-Au19533			Х						
17	BH04_0.6-0.7	Aug 16, 2017	Soil	S17-Au19534			Х						
18	BH06_0.6-0.7	Aug 16, 2017	Soil	S17-Au19535			Х						
19	BH08_0.3-0.4	Aug 16, 2017	Soil	S17-Au19536			Х						
20	BH08_0.8-0.9	Aug 16, 2017	Soil	S17-Au19537			Х						

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney
Unit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 9900 8400
NATA # 1261 Site # 18217

Brisbane I/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794 Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

JBS & G Australia (NSW) P/L **Company Name:**

Address: Level 1, 50 Margaret St

Sydney NSW 2000

Project Name: **ESA 3 SCHOOLS - GREENWICH**

Project ID:

52885

Order No.: Received: Aug 16, 2017 5:00 PM

Report #: 558877 Due: Aug 23, 2017

Phone: 02 8245 0300 Priority: 5 Day **Contact Name:** Fax: Scott Burrows

		Sa	mple Detail			% Clay	Asbestos - WA guidelines	HOLD	pH (1:5 Aqueous extract)	Total Organic Carbon	Moisture Set	Cation Exchange Capacity	BTEXN and Volatile TRH	JBS&G Suite 2
Melb	ourne Laborato	ory - NATA Site	# 1254 & 142	71				Х	Х	Х	Х	Х	Х	Х
Sydi	ney Laboratory	- NATA Site # 1	8217										Х	Х
Bris	bane Laboratory	y - NATA Site #	20794			Х								
Pert	h Laboratory - N	NATA Site # 237	36				Х							
21	BH09_0.4-0.5	Aug 16, 2017		Soil	S17-Au19538			Х						
22	CBR03	Aug 16, 2017		Soil	S17-Au19539			Х						
Test	Counts					9	9	10	9	9	10	9	2	10

Certificate of Analysis

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025–Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

JBS & G Australia (NSW) P/L Level 1, 50 Margaret St **Sydney NSW 2000**

Scott Burrows Attention: 558877-AID Report

Project Name ESA 3 SCHOOLS - GREENWICH

Project ID 52885

Received Date Aug 16, 2017 Aug 24, 2017 **Date Reported**

Methodology:

Asbestos Fibre Identification

Conducted in accordance with the Australian Standard AS 4964 - 2004: Method for the Qualitative Identification of Asbestos in Bulk Samples and in-house Method LTM-ASB-8020 by polarised light microscopy (PLM) and dispersion staining (DS) techniques.

NOTE: Positive Trace Analysis results indicate the sample contains detectable respirable fibres.

Unknown Mineral

Fibres

Mineral fibres of unknown type, as determined by PLM with DS, may require another analytical technique, such as Electron Microscopy, to confirm unequivocal identity.

NOTE: While Actinolite, Anthophyllite and Tremolite asbestos may be detected by PLM with DS, due to variability in the optical properties of these materials, AS4964 requires that these are reported as UMF unless confirmed by an independent technique.

Subsampling Soil Samples

The whole sample submitted is first dried and then passed through a 10mm sieve followed by a 2mm sieve. All fibrous matter greater than 10mm, greater than 2mm as well as the material passing through the 2mm sieve are retained and analysed for the presence of asbestos. If the sub 2mm fraction is greater than approximately 30 to 60g then a sub-

sampling routine based on ISO 3082:2009(E) is employed.

NOTE: Depending on the nature and size of the soil sample, the sub-2 mm residue material may need to be sub-sampled for trace analysis, in accordance with AS 4964-2004.

Bonded asbestoscontaining material (ACM)

The material is first examined and any fibres isolated for identification by PLM and DS. Where required, interfering matrices may be removed by disintegration using a range of heat, chemical or physical treatments, possibly in combination. The resultant material is then further examined in accordance with AS 4964 - 2004. NOTE: Even after disintegration it may be difficult to detect the presence of asbestos in some asbestos-containing bulk materials using PLM and DS. This is due to the low grade or small length or diameter of the asbestos fibres present in the material, or to the fact that very fine fibres have been distributed intimately throughout the materials. Vinyl/asbestos floor tiles, some asbestos-containing sealants and mastics, asbestos-containing epoxy resins and some ore samples are examples of these types of material, which are difficult to analyse.

Limit of Reporting

The performance limitation of the AS4964 method is around 0.1 g/kg (0.01% (w/w)). Where no asbestos is found by PLM and DS, including Trace Analysis where required, this is considered to be at the nominal reporting limit of 0.01 % PLW and DS, including Trace Analysis where required, this is considered to be at the nominal reporting limit of 0.01 % (w / w). The examination of large sample sizes(500 mL is recommended) may improve the likelihood of identifying ACM in the > 2mm fraction. The NEPM screening level of 0.001 % (w / w) asbestos in soil for FA(friable asbestos) and AF(asbestos fines) then applies where they are able to be quantified by gravimetric procedures. This quantitative screening is not generally applicable to FF(free fibres) and results of Trace Analysis are referred.

NOTE: NATA News March 2014, p.7, states in relation to AS4964: "This is a qualitative method with a nominal reporting limit of 0.01%" and that currently in Australia "there is no validated method available for the quantification of asbestos". Accordingly, NATA Accreditation does not cover the performance of this service (indicated with an asterisk). Accordingly, NATA Accreditation does not cover the periormance of this service (indicated with an asteriosis). This report is consistent with the analytical procedures and reporting recommendations in the National Environment Protection (Assessment of Site Contamination) Measure, 2013 (as amended) and the Western Australia Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated Sites in Western Australia, 2009, including supporting document Recommended Procedures for Laboratory Analysis of Asbestos in Soil, June 2011.

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025—Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Project Name ESA 3 SCHOOLS - GREENWICH

Project ID 52885

Date SampledAug 16, 2017Report558877-AID

Client Sample ID	Eurofins mgt Sample No.	Date Sampled	Sample Description	Result
BH01_0.05-0.15	17-Au19518	Aug 16, 2017	Approximate Sample 602g Sample consisted of: Various coloured coarse grain sandy soil and rocks.	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No respirable fibres detected. M11
BH02_0.1-0.2	17-Au19519	Aug 16, 2017	Approximate Sample 645g Sample consisted of: Light brown coarse grain sandy soil and rocks.	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No respirable fibres detected. M11
BH03_0.05-0.15	17-Au19520	Aug 16, 2017	Approximate Sample 567g Sample consisted of: Black coarse grain soil and rocks.	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No respirable fibres detected. M11
BH04_0.1-0.2	17-Au19521	Aug 16, 2017	Approximate Sample 677g Sample consisted of: Grey coarse grain soil and rocks.	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No respirable fibres detected. M11
BH05_0-0.1	17-Au19522	Aug 16, 2017	Approximate Sample 656g Sample consisted of: Brown coarse grain sandy soil and rocks.	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No respirable fibres detected. M11
BH06_0.1-0.2	17-Au19523	Aug 16, 2017	Approximate Sample 709g Sample consisted of: Brown coarse grain sandy soil and rocks.	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No respirable fibres detected. M11
BH07_0.1-0.2	17-Au19524	Aug 16, 2017	Approximate Sample 826g Sample consisted of: Brown coarse grain sandy soil and rocks.	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No respirable fibres detected. M11
BH08_0.1-0.2	17-Au19525	Aug 16, 2017	Approximate Sample 636g Sample consisted of: Grey coarse grain soil and rocks.	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No respirable fibres detected. M11
BH09_0.1-0.2	17-Au19526	Aug 16, 2017	Approximate Sample 486g Sample consisted of: Brown coarse grain sandy soil and rocks.	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No respirable fibres detected. M11

Page 2 of 8

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

DescriptionTesting SiteExtractedHolding TimeAsbestos - LTM-ASB-8020PerthAug 22, 2017Indefinite

Melbourne

3-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261

16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Sydney Unit F3, Building F

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600

2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 NATA # 1261 Site # 20794 Site # 23736

Perth

% | ½ | ± | ½ | ₹ | 0 | ₪ | ½ |

5:00 PM Due: Aug 23, 2017

Priority: 5 Day

Contact Name: Scott Burrows

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

JBS & G Australia (NSW) P/L	Order No.:		Received:	Aug 16, 2017 5:0
Level 1, 50 Margaret St	Report #:	558877	Due:	Aug 23, 2017

Site # 1254 & 14271

Level 1, 50 Margaret St Sydney Phone: 02 8245 0300 NSW 2000 Fax:

Project Name: ESA 3 SCHOOLS - GREENWICH

Project ID: 52885

Company Name:

Address:

		Sa	mple Detail			6 Clay	sbestos - WA guidelines	-OLD	H (1:5 Aqueous extract)	otal Organic Carbon	/loisture Set	Cation Exchange Capacity	STEXN and Volatile TRH	BS&G Suite 2
Melk	ourne Laborato	ory - NATA Site	# 1254 & 142	271				Х	Х	Х	Х	Х	Х	Х
Sydi	ney Laboratory	- NATA Site # 1	8217										Х	Х
Bris	bane Laborator	y - NATA Site #	20794			Х								
Pert	h Laboratory - N	NATA Site # 237	36				Х							
Exte	rnal Laboratory													
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID									
1	BH01_0.05- 0.15	Aug 16, 2017		Soil	S17-Au19518	Х	Х		Х	Х	Х	Х		Х
2	BH02_0.1-0.2	Aug 16, 2017		Soil	S17-Au19519	Х	Х		Х	Х	Х	Х		Х
3	BH03_0.05- 0.15	Aug 16, 2017		Soil	S17-Au19520	Х	Х		Х	Х	Х	Х		Х
4	BH04_0.1-0.2	Aug 16, 2017		Soil	S17-Au19521	Х	Х		Х	Х	Х	Х		Х
5	BH05_0-0.1	Aug 16, 2017		Soil	S17-Au19522	Х	Х		Х	Х	Х	Х		Х
6	BH06_0.1-0.2	Aug 16, 2017		Soil	S17-Au19523	Х	Х		Х	Х	Х	Х		Х
7	BH07_0.1-0.2	Aug 16, 2017		Soil	S17-Au19524	Х	Х		Х	Х	Х	Х		Х
8	BH08_0.1-0.2	Aug 16, 2017		Soil	S17-Au19525	Х	Х		Х	Х	Х	Х		Х

Page 4 of 8

Melbourne

Site # 1254 & 14271

Oakleigh VIC 3166
Phone: +61 3 8564 5000
NATA # 1261

16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Sydney Unit F3, Building F Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794 Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Aug 16, 2017 5:00 PM

Aug 23, 2017

Company Name: JBS & G Australia (NSW) P/L

Address:

Level 1, 50 Margaret St

Sydney NSW 2000 Order No.: Report #: Phone:

Fax:

558877

02 8245 0300

Priority: 5 Day

Received:

Due:

Contact Name: Scott Burrows

Project Name: ES

ESA 3 SCHOOLS - GREENWICH

Project ID:

52885

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

			ple Detail		% Clay	Asbestos - WA guidelines	HOLD	pH (1:5 Aqueous extract)	Total Organic Carbon	Moisture Set	Cation Exchange Capacity	BTEXN and Volatile TRH	JBS&G Suite 2
Mell	oourne Laborato	ory - NATA Site #	1254 & 14271				Х	Х	Х	Х	Х	Х	Х
Syd	ney Laboratory	- NATA Site # 18	217									Х	Х
Bris	bane Laborator	y - NATA Site # 2	0794		Х								
Pert	h Laboratory - N	NATA Site # 2373				Х							
9	BH09_0.1-0.2	Aug 16, 2017	Soil	S17-Au19526	Х	Х		Х	Х	Х	Х		Х
10	QA20170816	Aug 16, 2017	Soil	S17-Au19527						Х			Х
11	ТВ	Aug 16, 2017	Water	S17-Au19528								Х	
12	TS	Aug 16, 2017	Water	S17-Au19529								Х	
13	BH01_0.2-0.3	Aug 16, 2017	Soil	S17-Au19530			Х						
14	BH02_0.5-0.6	Aug 16, 2017	Soil	S17-Au19531			Х						
15	BH03_0.2-0.3	Aug 16, 2017	Soil	S17-Au19532			Х						
16	BH04_0.5-0.6	Aug 16, 2017	Soil	S17-Au19533			Х						
17	BH04_0.6-0.7	Aug 16, 2017	Soil	S17-Au19534			Х						
18	BH06_0.6-0.7	Aug 16, 2017	Soil	S17-Au19535	1		Х						
19	BH08_0.3-0.4	Aug 16, 2017	Soil	S17-Au19536	1		Х						
20	BH08_0.8-0.9	Aug 16, 2017	Soil	S17-Au19537			Х						

Page 5 of 8

Phone:

Fax:

Melbourne

02 8245 0300

3-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Sydney Unit F3, Building F

Brisbane

1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Company Name:

JBS & G Australia (NSW) P/L

Level 1, 50 Margaret St

Sydney

NSW 2000

Project Name: Project ID:

Address:

ESA 3 SCHOOLS - GREENWICH

52885

Order No.: Received: Aug 16, 2017 5:00 PM Report #: 558877

Due: Aug 23, 2017

Priority: 5 Day **Contact Name:** Scott Burrows

		Sa	mple Detail			% Clay	Asbestos - WA guidelines	HOLD	pH (1:5 Aqueous extract)	Total Organic Carbon	Moisture Set	Cation Exchange Capacity	BTEXN and Volatile TRH	JBS&G Suite 2
Melk	ourne Laborato	ory - NATA Site	# 1254 & 142	71				Х	Х	Х	Х	Х	Χ	Х
Sydi	ney Laboratory	- NATA Site # 1	8217										Χ	Х
Bris	bane Laborator	y - NATA Site #	20794			Х								
Pert	h Laboratory - N	ATA Site # 237	36				Х							
21	BH09_0.4-0.5	Aug 16, 2017		Soil	S17-Au19538			Х						
22	CBR03	Aug 16, 2017		Soil	S17-Au19539			Х						
Test	Counts					9	9	10	9	9	10	9	2	10

Internal Quality Control Review and Glossary

General

- 1. QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated
- 3. Samples were analysed on an 'as received' basis
- 4. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported. Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

Units

% w/w: weight for weight basis grams per kilogram
Filter loading: fibres/100 graticule areas

Reported Concentration: fibres/mL Flowrate: L/min

Terms

ΑF

Date Reported: Aug 24, 2017

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis

LOR Limit of Reporting
COC Chain of Custody
SRA Sample Receipt Advice

ISO International Standards Organisation

AS Australian Standards

WA DOH Western Australia Department of Health

NOHSC National Occupational Health and Safety Commission

ACM Bonded asbestos-containing material means any material containing more than 1% asbestos and comprises asbestos-containing-material which is in sound condition,

although possibly broken or fragmented, and where the asbestos is bound in a matrix such as cement or resin. Common examples of ACM include but are not limited to: pipe and boiler insulation, sprayed-on fireproofing, troweled-on acoustical plaster, floor tile and mastic, floor linoleum, transite shingles, roofing materials, wall and ceiling plaster, ceiling tiles, and gasket materials. This term is restricted to material that cannot pass a 7 mm x 7 mm sieve. This sieve size is selected because it approximates the thickness of common asbestos cement sheeting and for fragments to be smaller than this would imply a high degree of damage and hence potential

for fibre release.

FA FA comprises friable asbestos material and includes severely weathered cement sheet, insulation products and woven asbestos material. This type of friable asbestos

is defined here as asbestos material that is in a degraded condition such that it can be broken or crumbled by hand pressure. This material is typically unbonded or

was previously bonded and is now significantly degraded (crumbling).

PACM Presumed Asbestos-Containing Material means thermal system insulation and surfacing material found in buildings, vessels, and vessel sections constructed no later

than 1980 that are assumed to contain greater than one percent asbestos but have not been sampled or analyzed to verify or negate the presence of asbestos.

Asbestos fines (AF) are defined as free fibres, or fibre bundles, smaller than 7mm. It is the free fibres which present the greatest risk to human health, although very

small fibres (< 5 microns in length) are not considered to be such a risk. AF also includes small fragments of bonded ACM that pass through a 7 mm x 7 mm sieve.

(Note that for bonded ACM fragments to pass through a 7 mm x 7 mm sieve implies a substantial degree of damage which increases the potential for fibre release.)

AC Asbestos cement means a mixture of cement and asbestos fibres (typically 90:10 ratios).

Comments

Sample Integrity

 Custody Seals Intact (if used)
 N/A

 Attempt to Chill was evident
 Yes

 Sample correctly preserved
 Yes

 Appropriate sample containers have been used
 Yes

 Sample containers for volatile analysis received with minimal headspace
 Yes

 Samples received within HoldingTime
 Yes

 Some samples have been subcontracted
 No

Qualifier Codes/Comments

Code Description N/A Not applicable

M11 NATA accreditation does not cover the performance of this service.

Asbestos Counter/Identifier:

Edward Rowley Asbestos Analyst (WA)

Authorised by:

Matthew Deaves Senior Analyst-Asbestos (WA)

Glenn Jackson

National Operations Manager

Final Report - this report replaces any previously issued Report

- Indicates Not Requested

Date Reported: Aug 24, 2017

 * Indicates NATA accreditation does not cover the performance of this service

Uncertainty data is available on request

Eurofins, Imgt shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins I mgt be liable for consequential clauser inclinated to, lost profits, damages for relative to meet decidines and ols the production arising from this report. This document shall not be reproduced except in full and relates only to the times tested. Unlies indicated otherwises, the tests were performed on the samples as received.

Page 8 of 8

JBS & G Australia (NSW) P/L Level 1, 50 Margaret St Sydney NSW 2000 ilac MRA

Certificate of Analysis

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention: Scott Burrows

Report 558877-S

Project name ESA 3 SCHOOLS - GREENWICH

Project ID 52885 Received Date Aug 16, 2017

Client Sample ID			BH01_0.05- 0.15	BH02_0.1-0.2	BH03_0.05- 0.15	BH04_0.1-0.2
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S17-Au19518	S17-Au19519	S17-Au19520	S17-Au19521
Date Sampled			Aug 16, 2017	Aug 16, 2017	Aug 16, 2017	Aug 16, 2017
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM F	ractions					
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	560	< 50	270	160
TRH C29-C36	50	mg/kg	410	57	1000	330
TRH C10-36 (Total)	50	mg/kg	970	57	1270	490
BTEX						
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	82	82	100	129
Total Recoverable Hydrocarbons - 2013 NEPM F	ractions					
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C10-C16 less Naphthalene (F2)N01	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	760	< 100	1100	380
TRH >C34-C40	100	mg/kg	210	< 100	820	370
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	22	< 0.5	1.6	3.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	22	0.6	1.9	3.5
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	22	1.2	2.1	3.5
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	1.6	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	2.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	12	< 0.5	0.7	1.7
Benzo(a)pyrene	0.5	mg/kg	13	< 0.5	1.3	2.3
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	20	< 0.5	0.8	1.5
Benzo(g.h.i)perylene	0.5	mg/kg	9.5	< 0.5	0.9	1.9
Benzo(k)fluoranthene	0.5	mg/kg	10	< 0.5	0.9	1.3
Chrysene	0.5	mg/kg	12	< 0.5	0.9	1.9
Dibenz(a.h)anthracene	0.5	mg/kg	3.5	< 0.5	< 0.5	0.6

Client Sample ID			BH01_0.05- 0.15	BH02_0.1-0.2	BH03_0.05- 0.15	BH04_0.1-0.2
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S17-Au19518	S17-Au19519	S17-Au19520	S17-Au19521
Date Sampled			Aug 16, 2017	Aug 16, 2017		Aug 16, 2017
•	LOD	l lmit	Aug 16, 2017	Aug 16, 2017	Aug 16, 2017	Aug 10, 2017
Test/Reference Polycyclic Aromatic Hydrocarbons	LOR	Unit				
,	0.5		20	.0.5	4.7	0.7
Fluorene Fluorene	0.5 0.5	mg/kg	0.7	< 0.5 < 0.5	1.7 < 0.5	2.7 < 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg mg/kg	7.3	< 0.5	0.6	1.2
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	10	< 0.5	1.0	1.9
Pyrene	0.5	mg/kg	22	< 0.5	1.8	4.5
Total PAH*	0.5	mg/kg	146.1	< 0.5	10.6	21.5
2-Fluorobiphenyl (surr.)	1	%	96	98	107	78
p-Terphenyl-d14 (surr.)	1	%	130	144	149	110
Organochlorine Pesticides	l.					
Chlordanes - Total	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
4.4'-DDD	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDE	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDT	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
a-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Aldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
b-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
d-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Dieldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan I	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan II	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan sulphate	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin aldehyde	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin ketone	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
g-BHC (Lindane)	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor epoxide	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Hexachlorobenzene	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Methoxychlor	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Toxaphene	1	mg/kg	< 1	< 1	< 1	< 1
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Vic EPA IWRG 621 Organochlorine pesticides (Total)*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Vic EPA IWRG 621 Other organochlorine pesticides (Total)*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Dibutylchlorendate (surr.)	1	%	86	77	63	74
Tetrachloro-m-xylene (surr.)	1	%	61	63	57	63
Polychlorinated Biphenyls						
Aroclor-1016	0.1	mg/kg	< 0.5	< 0.1	< 0.1	< 0.1
Aroclor-1221	0.1	mg/kg	< 0.5	< 0.1	< 0.1	< 0.1
Aroclor-1232	0.1	mg/kg	< 0.5	< 0.1	< 0.1	< 0.1
Aroclor-1242	0.1	mg/kg	< 0.5	< 0.1	< 0.1	< 0.1
Aroclor-1248	0.1	mg/kg	< 0.5	< 0.1	< 0.1	< 0.1
Aroclor-1254	0.1	mg/kg	< 0.5	< 0.1	< 0.1	< 0.1
Aroclor-1260	0.1	mg/kg	< 0.5	< 0.1	< 0.1	< 0.1
Total PCB*	0.1	mg/kg	< 0.5	< 0.1	< 0.1	< 0.1
Dibutylchlorendate (surr.)	1	%	86	77	63	74
Tetrachloro-m-xylene (surr.)	1	%	61	63	57	63

Client Sample ID Sample Matrix Eurofins mgt Sample No. Date Sampled Test/Reference	LOR	Unit	BH01_0.05- 0.15 Soil S17-Au19518 Aug 16, 2017	BH02_0.1-0.2 Soil S17-Au19519 Aug 16, 2017	BH03_0.05- 0.15 Soil S17-Au19520 Aug 16, 2017	BH04_0.1-0.2 Soil S17-Au19521 Aug 16, 2017
% Clay	1	%	15	16	10.0	10
Conductivity (1:5 aqueous extract at 25°C)	10	uS/cm	120	130	140	73
pH (1:5 Aqueous extract)	0.1	pH Units	7.9	6.5	9.3	9.5
Total Organic Carbon	0.1	%	1.5	0.9	4.1	4.0
% Moisture	1	%	9.4	14	8.1	8.7
Heavy Metals						
Arsenic	2	mg/kg	57	8.0	2.8	2.8
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	42	24	45	20
Copper	5	mg/kg	22	< 5	47	170
Lead	5	mg/kg	110	20	20	15
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	< 5	< 5	46	24
Zinc	5	mg/kg	72	13	60	63
Cation Exchange Capacity						
Cation Exchange Capacity	0.05	meq/100g	16	4.1	21	26

Client Sample ID			BH05_0-0.1	BH06_0.1-0.2	BH07_0.1-0.2	BH08_0.1-0.2
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S17-Au19522	S17-Au19523	S17-Au19524	S17-Au19525
Date Sampled			Aug 16, 2017	Aug 16, 2017	Aug 16, 2017	Aug 16, 2017
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM Frac	tions					
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	< 50	< 50	< 50	< 50
TRH C29-C36	50	mg/kg	63	< 50	< 50	< 50
TRH C10-36 (Total)	50	mg/kg	63	< 50	< 50	< 50
BTEX						
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	97	77	130	136
Total Recoverable Hydrocarbons - 2013 NEPM Frac	tions					
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C10-C16 less Naphthalene (F2)N01	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	110	< 100	< 100	< 100
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100	< 100

Client Sample ID			BH05_0-0.1	BH06_0.1-0.2	BH07_0.1-0.2	BH08_0.1-0.2
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S17-Au19522	S17-Au19523	S17-Au19524	S17-Au19525
Date Sampled			Aug 16, 2017	Aug 16, 2017	Aug 16, 2017	Aug 16, 2017
Test/Reference	LOR	Unit	7.09 10, 2011	7109 10, 2011	7.09 10, 2011	7.09 10, 2011
Polycyclic Aromatic Hydrocarbons	LOI	Offic				
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluorene	0.5	mg/kg	< 1	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	< 1	< 0.5	< 0.5	< 0.5
2-Fluorobiphenyl (surr.)	1	%	101	96	106	100
p-Terphenyl-d14 (surr.)	1	%	145	142	140	141
Organochlorine Pesticides		•				
Chlordanes - Total	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
4.4'-DDD	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDE	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDT	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
a-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Aldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
b-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
d-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Dieldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan I	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan II	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan sulphate	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin aldehyde	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin ketone	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
g-BHC (Lindane)	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor epoxide	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Hexachlorobenzene	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Methoxychlor	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Toxaphene	1	mg/kg	< 1	< 1	< 1	< 1
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Vic EPA IWRG 621 Organochlorine pesticides (Total)*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Vic EPA IWRG 621 Other organochlorine pesticides	0.4	m m/l. =	-04	.04	-04	-04
(Total)*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Dibutylchlorendate (surr.) Tetrachloro-m-xylene (surr.)	1	%	139 50	101 128	72 62	99 114

Client Sample ID			BH05_0-0.1	BH06_0.1-0.2	BH07_0.1-0.2	BH08_0.1-0.2
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S17-Au19522	S17-Au19523	S17-Au19524	S17-Au19525
Date Sampled			Aug 16, 2017	Aug 16, 2017	Aug 16, 2017	Aug 16, 2017
Test/Reference	LOR	Unit				
Polychlorinated Biphenyls	·					
Aroclor-1016	0.1	mg/kg	< 0.5	< 0.1	< 0.1	< 0.1
Aroclor-1221	0.1	mg/kg	< 0.5	< 0.1	< 0.1	< 0.1
Aroclor-1232	0.1	mg/kg	< 0.5	< 0.1	< 0.1	< 0.1
Aroclor-1242	0.1	mg/kg	< 0.5	< 0.1	< 0.1	< 0.1
Aroclor-1248	0.1	mg/kg	< 0.5	< 0.1	< 0.1	< 0.1
Aroclor-1254	0.1	mg/kg	< 0.5	< 0.1	< 0.1	< 0.1
Aroclor-1260	0.1	mg/kg	< 0.5	< 0.1	< 0.1	< 0.1
Total PCB*	0.1	mg/kg	< 0.5	< 0.1	< 0.1	< 0.1
Dibutylchlorendate (surr.)	1	%	139	101	72	99
Tetrachloro-m-xylene (surr.)	1	%	50	128	62	114
% Clay	1	%	7.5	10	7.5	8.8
Conductivity (1:5 aqueous extract at 25°C)	10	uS/cm	25	57	76	1300
pH (1:5 Aqueous extract)	0.1	pH Units	8.2	8.1	8.1	12
Total Organic Carbon	0.1	%	1.6	0.9	1.1	0.4
% Moisture	1	%	7.1	5.5	5.5	11
Heavy Metals						
Arsenic	2	mg/kg	3.1	2.2	3.4	2.1
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	8.4	7.2	10	7.2
Copper	5	mg/kg	5.8	< 5	15	< 5
Lead	5	mg/kg	17	22	52	13
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	< 5	< 5	16	< 5
Zinc	5	mg/kg	61	18	75	13
Cation Exchange Capacity						
Cation Exchange Capacity	0.05	meq/100g	6.4	7.0	10	89

Client Sample ID Sample Matrix Eurofins mgt Sample No.			BH09_0.1-0.2 Soil S17-Au19526	QA20170816 Soil S17-Au19527
Date Sampled			Aug 16, 2017	Aug 16, 2017
Test/Reference	LOR	Unit		
Total Recoverable Hydrocarbons - 1999 NE	PM Fractions			
TRH C6-C9	20	mg/kg	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20
TRH C15-C28	50	mg/kg	< 50	< 50
TRH C29-C36	50	mg/kg	< 50	130
TRH C10-36 (Total)	50	mg/kg	< 50	130
BTEX				
Benzene	0.1	mg/kg	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1
Xylenes - Total	0.3	mg/kg	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	126	82

Client Sample ID			BH09_0.1-0.2	QA20170816
Sample Matrix			Soil	Soil
Eurofins mgt Sample No.			S17-Au19526	S17-Au19527
Date Sampled			Aug 16, 2017	Aug 16, 2017
Test/Reference	LOR	Unit		
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions			
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	< 20
TRH C6-C10	20	mg/kg	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50
TRH >C16-C34	100	mg/kg	< 100	160
TRH >C34-C40	100	mg/kg	< 100	< 100
Polycyclic Aromatic Hydrocarbons				
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5
Pyrene	0.5	mg/kg	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	< 0.5	< 0.5
2-Fluorobiphenyl (surr.)	1	%	110	91
p-Terphenyl-d14 (surr.)	1	%	147	122
Organochlorine Pesticides		T		
Chlordanes - Total	0.1	mg/kg	< 0.1	< 0.1
4.4'-DDD	0.05	mg/kg	< 0.05	< 0.05
4.4'-DDE	0.05	mg/kg	< 0.05	< 0.05
4.4'-DDT	0.05	mg/kg	< 0.05	< 0.05
a-BHC	0.05	mg/kg	< 0.05	< 0.05 < 0.05
Aldrin b-BHC	0.05 0.05	mg/kg	< 0.05	< 0.05
		mg/kg	< 0.05	< 0.05
d-BHC Dieldrin	0.05 0.05	mg/kg mg/kg	< 0.05 < 0.05	< 0.05
Endosulfan I	0.05	mg/kg	< 0.05	< 0.05
Endosulfan II	0.05	mg/kg	< 0.05	< 0.05
Endosulfan sulphate	0.05	mg/kg	< 0.05	< 0.05
Endosulian sulphate Endrin	0.05	mg/kg	< 0.05	< 0.05
Endrin aldehyde	0.05	mg/kg	< 0.05	< 0.05
Endrin aldenyde Endrin ketone	0.05	mg/kg	< 0.05	< 0.05
g-BHC (Lindane)	0.05	mg/kg	< 0.05	< 0.05
Heptachlor	0.05	mg/kg	< 0.05	< 0.05
Heptachlor epoxide	0.05	mg/kg	< 0.05	< 0.05

Client Sample ID			BH09_0.1-0.2	QA20170816
Sample Matrix			Soil	Soil
Eurofins mgt Sample No.			S17-Au19526	S17-Au19527
Date Sampled			Aug 16, 2017	Aug 16, 2017
Test/Reference	LOR	Unit		
Organochlorine Pesticides		'		
Hexachlorobenzene	0.05	mg/kg	< 0.05	< 0.05
Methoxychlor	0.05	mg/kg	< 0.05	< 0.05
Toxaphene	1	mg/kg	< 1	< 1
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.05	< 0.05
DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.05	< 0.05
Vic EPA IWRG 621 Organochlorine pesticides (Total)*	0.1	mg/kg	< 0.1	< 0.1
Vic EPA IWRG 621 Other organochlorine pesticides (Total)*	0.1	mg/kg	< 0.1	< 0.1
Dibutylchlorendate (surr.)	1	%	85	87
Tetrachloro-m-xylene (surr.)	1	%	69	69
Polychlorinated Biphenyls		•		
Aroclor-1016	0.1	mg/kg	< 0.1	< 0.1
Aroclor-1221	0.1	mg/kg	< 0.1	< 0.1
Aroclor-1232	0.1	mg/kg	< 0.1	< 0.1
Aroclor-1242	0.1	mg/kg	< 0.1	< 0.1
Aroclor-1248	0.1	mg/kg	< 0.1	< 0.1
Aroclor-1254	0.1	mg/kg	< 0.1	< 0.1
Aroclor-1260	0.1	mg/kg	< 0.1	< 0.1
Total PCB*	0.1	mg/kg	< 0.1	< 0.1
Dibutylchlorendate (surr.)	1	%	85	87
Tetrachloro-m-xylene (surr.)	1	%	69	69
% Clay	1	%	6.3	-
Conductivity (1:5 aqueous extract at 25°C)	10	uS/cm	85	-
pH (1:5 Aqueous extract)	0.1	pH Units	8.4	-
Total Organic Carbon	0.1	%	2.9	-
% Moisture	1	%	8.3	7.8
Heavy Metals				
Arsenic	2	mg/kg	6.5	3.7
Cadmium	0.4	mg/kg	< 0.4	< 0.4
Chromium	5	mg/kg	7.4	11
Copper	5	mg/kg	20	16
Lead	5	mg/kg	110	59
Mercury	0.1	mg/kg	< 0.1	< 0.1
Nickel	5	mg/kg	< 5	16
Zinc	5	mg/kg	54	86
Cation Exchange Capacity				
Cation Exchange Capacity	0.05	meq/100g	7.7	-

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
JBS&G Suite 2			
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Melbourne	Aug 21, 2017	14 Day
- Method: LTM-ORG-2010 TRH C6-C36			
BTEX	Melbourne	Aug 21, 2017	14 Day
- Method: TRH C6-C40 - LTM-ORG-2010			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Melbourne	Aug 21, 2017	14 Day
- Method: TRH C6-C40 - LTM-ORG-2010			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Melbourne	Aug 21, 2017	14 Day
- Method: TRH C6-C40 - LTM-ORG-2010			
Polycyclic Aromatic Hydrocarbons	Melbourne	Aug 21, 2017	14 Day
- Method: LTM-ORG-2140 PAH and Phenols in Soils by GCMS			
Organochlorine Pesticides	Melbourne	Aug 21, 2017	14 Day
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water			
Polychlorinated Biphenyls	Melbourne	Aug 21, 2017	28 Days
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water			
Metals M8	Melbourne	Aug 21, 2017	28 Days
- Method: LTM-MET-3030 by ICP-OES (hydride ICP-OES for Mercury)			
% Clay	Brisbane	Aug 22, 2017	6 Day
- Method: LTM-GEN-7040			
pH (1:5 Aqueous extract)	Melbourne	Aug 21, 2017	7 Day
- Method: LTM-GEN-7090 pH in soil by ISE			
Total Organic Carbon	Melbourne	Aug 22, 2017	28 Day
- Method: APHA 5310B Total Organic Carbon			
Conductivity (1:5 aqueous extract at 25°C)	Melbourne	Aug 21, 2017	7 Day
- Method: LTM-INO-4030			
Cation Exchange Capacity	Melbourne	Aug 23, 2017	180 Days
- Method: LTM-MET-3060 - Cation Exchange Capacity (CEC) & Exchangeable Sodium Percentage (ESP)			
% Moisture	Melbourne	Aug 16, 2017	14 Day

Order No.:

Report #:

Phone:

Fax:

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

02 8245 0300

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane I/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794 Perth
2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
NATA # 1261 Site # 23736

Company Name: JBS & G Australia (NSW) P/L

Address: Level 1, 50 Margaret St

> Sydney NSW 2000

ESA 3 SCHOOLS - GREENWICH Project Name:

Project ID: 52885

Received: Aug 16, 2017 5:00 PM 558877

Due: Aug 23, 2017

> Priority: 5 Day

Contact Name: Scott Burrows

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

	Sample Detail							HOLD	pH (1:5 Aqueous extract)	Total Organic Carbon	Moisture Set	Cation Exchange Capacity	BTEXN and Volatile TRH	JBS&G Suite 2
Melb	Melbourne Laboratory - NATA Site # 1254 & 14271							Х	Х	Х	Х	Х	Х	Х
Sydi	ney Laboratory	- NATA Site # 1	8217										Х	Х
Bris	bane Laborator	y - NATA Site #	20794			Х								\square
	h Laboratory - N		36				Х							
	rnal Laboratory			ı										
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID									
1	BH01_0.05- 0.15	Aug 16, 2017		Soil	S17-Au19518	Х	х		Х	Х	х	Х		х
2	BH02_0.1-0.2	Aug 16, 2017		Soil	S17-Au19519	Х	Х		Х	Х	Х	Х		Х
3	3 BH03_0.05- Aug 16, 2017 Soil S17-Au19520					Х	Х		Х	Х	Х	Х		х
4	4 BH04_0.1-0.2 Aug 16, 2017 Soil S17-Au19521					Х	Х		Х	Х	Х	Х		Х
5							Х		Х	Х	Х	Х		Х
6	BH06_0.1-0.2 Aug 16, 2017 Soil S17-Au19523 BH07_0.1-0.2 Aug 16, 2017 Soil S17-Au19524								Х	Х	Х	Х		Х
7	BH07_0.1-0.2	S17-Au19524	Х	Х		Х	Х	Х	Х		Х			
8	BH08_0.1-0.2	Aug 16, 2017		Soil	S17-Au19525	Х	Х		Х	Х	Х	Х		Х

Eurofins | mgt Unit F3, Building F, 16 Mars Road, Lane Cove West, NSW, Australia, 2066 ABN: 50 005 085 521 Telephone: +61 2 9900 8400

Page 9 of 20 Report Number: 558877-S

Phone:

Fax:

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

02 8245 0300

Sydney
Unit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 9900 8400
NATA # 1261 Site # 18217

Brisbane I/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794 Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Company Name: JBS & G Australia (NSW) P/L

Address: Level 1, 50 Margaret St

> Sydney NSW 2000

ESA 3 SCHOOLS - GREENWICH Project Name:

Project ID: 52885 Order No.: Received: Aug 16, 2017 5:00 PM Report #: 558877

Due: Aug 23, 2017

Priority: 5 Day

Contact Name: Scott Burrows

Sample Detail						% Clay	Asbestos - WA guidelines	HOLD	pH (1:5 Aqueous extract)	Total Organic Carbon	Moisture Set	Cation Exchange Capacity	BTEXN and Volatile TRH	JBS&G Suite 2
Melk	Melbourne Laboratory - NATA Site # 1254 & 14271							Х	Х	Х	Х	Х	Χ	Х
Syd	ney Laboratory	- NATA Site # 18	217										Χ	Х
Bris	bane Laborator	y - NATA Site # 2	20794			Х								
Pert	h Laboratory - N	NATA Site # 2373	6				Х							
9	BH09_0.1-0.2	Aug 16, 2017		Soil	S17-Au19526	Х	Х		Х	Х	Х	Х		Х
10	QA20170816	Aug 16, 2017		Soil	S17-Au19527						Х			Х
11	ТВ	Aug 16, 2017		Water	S17-Au19528								Χ	
12	TS	Aug 16, 2017		Water	S17-Au19529								Χ	
13	BH01_0.2-0.3	Aug 16, 2017		Soil	S17-Au19530			Х						
	14 BH02_0.5-0.6 Aug 16, 2017 Soil S17-Au19531							Х						
15								Х						
16								Х						
17								Х						
18								Х						
19								Х						
20	BH08_0.8-0.9	Aug 16, 2017		Soil	S17-Au19537			Х						

> 9 9

10

9 10

Order No.:

Report #:

Phone:

Fax:

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

558877

02 8245 0300

10

9 2 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane I/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794 Perth
2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
NATA # 1261 Site # 23736

Company Name: JBS & G Australia (NSW) P/L

Address: Level 1, 50 Margaret St

> Sydney NSW 2000

Project Name: **ESA 3 SCHOOLS - GREENWICH**

Project ID: 52885

Test Counts

Received: Aug 16, 2017 5:00 PM

Due: Aug 23, 2017

Priority: 5 Day

Contact Name: Scott Burrows

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

	Sample Detail Melbourne Laboratory - NATA Site # 1254 & 14271							HOLD	pH (1:5 Aqueous extract)	Total Organic Carbon	Moisture Set	Cation Exchange Capacity	BTEXN and Volatile TRH	JBS&G Suite 2	
Mel	Melbourne Laboratory - NATA Site # 1254 & 14271						Х	Х	Х	Х	Х	Х	Х		
Syc	Sydney Laboratory - NATA Site # 18217												Х	Х	
Bris	Brisbane Laboratory - NATA Site # 20794				Х										
Per	Perth Laboratory - NATA Site # 23736					Х									
21	BH09_0.4-0.5	Aug 16, 2017		Soil	S17-Au19538			Х							
22								Х							

Page 11 of 20

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. All biota results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis
- 8. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

 mg/kg: milligrams per kilogram
 mg/L: milligrams per litre

 ug/L: micrograms per litre
 ppm: Parts per million

 ppb: Parts per billion
 %: Percentage

org/100mL: Organisms per 100 millilitres

NTU: Nephelometric Turbidity Units

MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting.

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody

SRA Sample Receipt Advice

QSM Quality Systems Manual ver 5.1 US Department of Defense

CP Client Parent - OC was performed on samples pertaining to this re

CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR: RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150%-Phenols & PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.1 where no positive PFAS results have been reported have been reviewed and no data was affected.

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Eurofins | mgt Unit F3, Building F, 16 Mars Road, Lane Cove West, NSW, Australia, 2066 ABN : 50 005 085 521 Telephone: +61 2 9900 8400

Quality Control Results

Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
mg/kg	< 20	20	Pass	
mg/kg	< 20	20	Pass	
mg/kg	< 50	50	Pass	
mg/kg	< 50	50	Pass	
mg/kg	< 0.1	0.1	Pass	
mg/kg	< 0.1	0.1	Pass	
mg/kg	< 0.1	0.1	Pass	
mg/kg	< 0.2	0.2	Pass	
	< 0.1	0.1	Pass	
	< 0.3	0.3	Pass	
1 3 5				
ma/ka	< 0.5	0.5	Pass	
	1.00	1.00	1 . 0.00	
ma/ka	< 0.5	0.5	Pass	
	1			
IIIg/kg	V 0.5	0.5	1 033	
ma/ka	< 0.1	0.1	Pacc	
	1			
ı ma/ka	< 0.05	0.05	Pass	
	mg/kg mg/kg mg/kg mg/kg mg/kg	mg/kg < 20	mg/kg	mg/kg < 20 20 Pass mg/kg < 20

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Endosulfan sulphate	mg/kg	< 0.05	0.05	Pass	
Endrin	mg/kg	< 0.05	0.05	Pass	
Endrin aldehyde	mg/kg	< 0.05	0.05	Pass	
Endrin ketone	mg/kg	< 0.05	0.05	Pass	
g-BHC (Lindane)	mg/kg	< 0.05	0.05	Pass	
Heptachlor	mg/kg	< 0.05	0.05	Pass	
Heptachlor epoxide	mg/kg	< 0.05	0.05	Pass	
Hexachlorobenzene	mg/kg	< 0.05	0.05	Pass	
Methoxychlor	mg/kg	< 0.05	0.05	Pass	
Toxaphene	mg/kg	< 1	1	Pass	
Method Blank					
Polychlorinated Biphenyls					
Aroclor-1016	mg/kg	< 0.1	0.1	Pass	
Aroclor-1221	mg/kg	< 0.1	0.1	Pass	
Aroclor-1232	mg/kg	< 0.1	0.1	Pass	
Aroclor-1242	mg/kg	< 0.1	0.1	Pass	
Aroclor-1248	mg/kg	< 0.1	0.1	Pass	
Aroclor-1254	mg/kg	< 0.1	0.1	Pass	
Aroclor-1260	mg/kg	< 0.1	0.1	Pass	
Total PCB*	mg/kg	< 0.1	0.1	Pass	
Method Blank	ı mg/kg	V 0.1	0.1	1 455	
% Clay	%	< 1	1	Pass	
Total Organic Carbon	%	< 0.1	0.1	Pass	
Method Blank	70	(0.1	0.1	1 033	
Heavy Metals					
Arsenic	mg/kg	< 2	2	Pass	
Cadmium	mg/kg	< 0.4	0.4	Pass	
Chromium		< 5	5	Pass	
	mg/kg	< 5	5	Pass	
Copper	mg/kg		5	Pass	
Lead Mercury	mg/kg	< 5			
	mg/kg	< 0.1	0.1	Pass	
Nickel	mg/kg	< 5	5	Pass	
Zinc	mg/kg	< 5	5	Pass	
Method Blank					
Cation Exchange Capacity	/400	.0.05	0.05	Dana	
Cation Exchange Capacity	meq/100g	< 0.05	0.05	Pass	
LCS - % Recovery					
Total Recoverable Hydrocarbons - 1999 NEPM Fractions		404	70.400	D	
TRH C6-C9	%	124	70-130	Pass	
TRH C10-C14	%	90	70-130	Pass	
LCS - % Recovery		Ι	T	I	
BTEX	1			_	
Benzene	%	106	70-130	Pass	
Toluene	%	126	70-130	Pass	
Ethylbenzene	%	127	70-130	Pass	
m&p-Xylenes	%	127	70-130	Pass	
Xylenes - Total	%	127	70-130	Pass	
LCS - % Recovery					
Total Recoverable Hydrocarbons - 2013 NEPM Fractions					
Naphthalene	%	89	70-130	Pass	
TRH C6-C10	%	122	70-130	Pass	
TD11 010 010	%	82	70-130	Pass	1
TRH >C10-C16 LCS - % Recovery	70	UZ	10.00		

nits Result 1	Acceptance Limits	Pass Limits	Qualifying Code
% 87	70-130	Pass	
% 101	70-130	Pass	
% 104	70-130	Pass	
% 104	70-130	Pass	
% 105	70-130	Pass	
% 107	70-130	Pass	
% 84	70-130	Pass	
% 110	70-130	Pass	
% 101	70-130	Pass	
% 91	70-130	Pass	
% 100	70-130	Pass	
% 101	70-130	Pass	
% 89	70-130	Pass	
% 94	70-130	Pass	
% 100	70-130	Pass	
% 98	70-130	Pass	
% 113	70-130	Pass	
% 99	70-130	Pass	
% 70	70-130	Pass	
% 105	70-130	Pass	
% 103	70-130	Pass	
% 101	70-130	Pass	
% 117	70-130	Pass	
% 97	70-130	Pass	
% 97	70-130	Pass	
% 95	70-130	Pass	
% 94	70-130	Pass	
% 98	70-130	Pass	
% 90	70-130	Pass	
% 77	70-130	Pass	
% 109	70-130	Pass	
% 87	70-130	Pass	
% 99	70-130	Pass	
% 102	70-130	Pass	
% 82	70-130	Pass	
70 02	70 100	1 455	
% 89	70-130	Pass	
70 03	70 130	1 433	
% 96	70-130	Pass	
% 96	70-130	Pass	
70 30	70-130	1 433	
% 97	80-120	Pass	
% 99	80-120	Pass	
			
% · · · · · · · · · · · · · · · · · · ·	103 105 109 112 107	103 80-120 105 80-120 109 80-120 112 75-125 107 80-120	103 80-120 Pass 105 80-120 Pass 109 80-120 Pass 112 75-125 Pass 107 80-120 Pass

Test	Lab Sample ID	QA Source	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery								
Total Recoverable Hydrocarbo	ons - 1999 NEPM Fract	ions		Result 1				
TRH C6-C9	S17-Au19360	NCP	%	116		70-130	Pass	
TRH C10-C14	S17-Au19666	NCP	%	86		70-130	Pass	
Spike - % Recovery								
BTEX				Result 1				
Benzene	S17-Au19360	NCP	%	79		70-130	Pass	
Toluene	S17-Au19360	NCP	%	96		70-130	Pass	
Ethylbenzene	S17-Au19360	NCP	%	96		70-130	Pass	
m&p-Xylenes	S17-Au19360	NCP	%	97		70-130	Pass	
o-Xylene	S17-Au19360	NCP	%	98		70-130	Pass	
Xylenes - Total	S17-Au19360	NCP	%	97		70-130	Pass	
Spike - % Recovery		1121	.,,		-		1 3.00	
Total Recoverable Hydrocarbo	ons - 2013 NEPM Fract	ions		Result 1				
Naphthalene	S17-Au19360	NCP	%	94		70-130	Pass	
TRH C6-C10	S17-Au19360	NCP	%	113		70-130	Pass	
TRH >C10-C16	S17-Au19666	NCP	%	80		70-130	Pass	
Spike - % Recovery	017 7413000	1401	70			70 130	1 433	
Polycyclic Aromatic Hydrocarl	hone			Result 1		T		
Acenaphthene	S17-Au19651	NCP	%	104		70-130	Pass	
•		NCP	%	122				
Acenaphthylene	S17-Au19651					70-130	Pass	
Anthracene	S17-Au19651	NCP	%	125		70-130	Pass	
Benz(a)anthracene	S17-Au19651	NCP	%	111		70-130	Pass	
Benzo(a)pyrene	S17-Au19651	NCP	%	102		70-130	Pass	
Benzo(b&j)fluoranthene	S17-Au19651	NCP	%	99		70-130	Pass	
Benzo(g.h.i)perylene	S17-Au19651	NCP	%	128		70-130	Pass	
Benzo(k)fluoranthene	S17-Au19651	NCP	%	105		70-130	Pass	
Chrysene	S17-Au19651	NCP	%	113		70-130	Pass	
Dibenz(a.h)anthracene	S17-Au19651	NCP	%	125		70-130	Pass	
Fluoranthene	S17-Au19651	NCP	%	114		70-130	Pass	
Fluorene	S17-Au19651	NCP	%	117		70-130	Pass	
Indeno(1.2.3-cd)pyrene	S17-Au19651	NCP	%	124		70-130	Pass	
Naphthalene	S17-Au19651	NCP	%	111		70-130	Pass	
Phenanthrene	S17-Au19651	NCP	%	110		70-130	Pass	
Pyrene	S17-Au19651	NCP	%	112		70-130	Pass	
Spike - % Recovery								
Heavy Metals				Result 1				
Arsenic	M17-Au18853	NCP	%	102		75-125	Pass	
Cadmium	M17-Au18853	NCP	%	108		75-125	Pass	
Chromium	M17-Au18853	NCP	%	99		75-125	Pass	
Copper	M17-Au18853	NCP	%	107		75-125	Pass	
Lead	M17-Au18853	NCP	%	107		75-125	Pass	
Mercury	M17-Au18853	NCP	%	118		70-130	Pass	
Nickel	M17-Au18853	NCP	%	102		75-125	Pass	
Zinc	M17-Au18853	NCP	%	111		75-125	Pass	
Spike - % Recovery								
Organochlorine Pesticides				Result 1				
4.4'-DDD	S17-Au19519	СР	%	93		70-130	Pass	
4.4'-DDE	S17-Au19519	CP	%	90		70-130	Pass	
4.4'-DDT	S17-Au19519	CP	%	89		70-130	Pass	
a-BHC	S17-Au19519	CP	%	96		70-130	Pass	
Aldrin	S17-Au19519	CP	%	94		70-130	Pass	
b-BHC	S17-Au19519	CP	%	91		70-130	Pass	
d-BHC	S17-Au19519	CP	%	105		70-130	Pass	

								_	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Dieldrin	S17-Au19519	CP	%	89			70-130	Pass	
Endosulfan I	S17-Au19519	CP	%	87			70-130	Pass	
Endosulfan II	S17-Au19519	CP	%	91			70-130	Pass	
Endosulfan sulphate	S17-Au19519	CP	%	92			70-130	Pass	
Endrin	S17-Au19519	CP	%	96			70-130	Pass	
Endrin aldehyde	S17-Au19519	CP	%	82			70-130	Pass	
Endrin ketone	S17-Au19519	CP	%	85			70-130	Pass	
g-BHC (Lindane)	S17-Au19519	CP	%	101			70-130	Pass	
Heptachlor	S17-Au19519	CP	%	92			70-130	Pass	
Heptachlor epoxide	S17-Au19519	CP	%	90			70-130	Pass	
Hexachlorobenzene	S17-Au19519	CP	%	94			70-130	Pass	
Methoxychlor	S17-Au19519	CP	%	100			70-130	Pass	
Spike - % Recovery									
Polychlorinated Biphenyls				Result 1					
Aroclor-1260	S17-Au19524	CP	%	84			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Total Recoverable Hydrocarbons -	1999 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH C10-C14	S17-Au20533	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C15-C28	S17-Au20533	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH C29-C36	S17-Au20533	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
Duplicate			<u> </u>						
Total Recoverable Hydrocarbons -	2013 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH >C10-C16	S17-Au20533	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH >C16-C34	S17-Au20533	NCP	mg/kg	< 100	< 100	<1	30%	Pass	
TRH >C34-C40	S17-Au20533	NCP	mg/kg	< 100	< 100	<1	30%	Pass	
Duplicate	<u> </u>								
				Result 1	Result 2	RPD			
Conductivity (1:5 aqueous extract									
at 25°C)	S17-Au19518	CP	uS/cm	120	110	6.0	30%	Pass	
pH (1:5 Aqueous extract)	S17-Au19518	CP	pH Units	7.9	8.0	pass	30%	Pass	
Duplicate				T	1		T		
Heavy Metals	T	1		Result 1	Result 2	RPD			
Arsenic	M17-Au18853	NCP	mg/kg	3.5	3.6	3.0	30%	Pass	
Cadmium	M17-Au18853	NCP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	M17-Au18853	NCP	mg/kg	30	30	<1	30%	Pass	
Copper	M17-Au18853	NCP	mg/kg	13	13	1.0	30%	Pass	
Lead	M17-Au18853	NCP	mg/kg	13	13	1.0	30%	Pass	
Mercury	M17-Au18853	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Nickel	M17-Au18853	NCP	mg/kg	15	15	1.0	30%	Pass	
Zinc	M17-Au18853	NCP	mg/kg	31	31	2.0	30%	Pass	
Duplicate				T	1				
Polycyclic Aromatic Hydrocarbons	S	1		Result 1	Result 2	RPD			
Acenaphthene	S17-Au19519	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Acenaphthylene	S17-Au19519	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Anthracene	S17-Au19519	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benz(a)anthracene	S17-Au19519	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(a)pyrene	S17-Au19519	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(b&j)fluoranthene	S17-Au19519	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(g.h.i)perylene	S17-Au19519	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(k)fluoranthene	S17-Au19519	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chrysene	S17-Au19519	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibenz(a.h)anthracene	S17-Au19519	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluoranthene	S17-Au19519	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	

Duplicate									
Polycyclic Aromatic Hydrocarbons				Result 1	Result 2	RPD			
Fluorene	S17-Au19519	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	S17-Au19519 S17-Au19519	CP	mg/kg	< 0.5	< 0.5	<u> </u>	30%	Pass	
Naphthalene	S17-Au19519 S17-Au19519	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Phenanthrene	S17-Au19519 S17-Au19519	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Pyrene	S17-Au19519 S17-Au19519	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate	317-Au19319	CF	i ilig/kg	V 0.5	(0.5		30 /0	Fass	
Duplicate				Result 1	Result 2	RPD			
Total Organic Carbon	S17-Au19519	СР	%	0.9	0.8	4.0	30%	Pass	
Duplicate	317-Au19319		70	0.9	0.0	4.0	30 /0	1 033	
Duplicate				Result 1	Result 2	RPD			
% Moisture	S17-Au19520	СР	%	8.1	8.8	8.0	30%	Pass	
Duplicate	317-A019320	Ci	70	0.1	0.0	0.0	30 /0	1 033	
Total Recoverable Hydrocarbons -	1999 NEPM Fract	ione		Result 1	Result 2	RPD			
TRH C6-C9	S17-Au19521	CP	mg/kg	< 20	< 20	<1	30%	Pass	
Duplicate	317-Au19321	Ci	i iiig/kg	<u> </u>	\ 20		30 /0	1 033	
BTEX				Result 1	Result 2	RPD			
Benzene	S17-Au19521	СР	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Toluene	S17-Au19521 S17-Au19521	CP	mg/kg	< 0.1	< 0.1	<u> </u>	30%	Pass	
Ethylbenzene	S17-Au19521 S17-Au19521	CP	mg/kg	< 0.1	< 0.1	<u> </u>	30%	Pass	
m&p-Xylenes	S17-Au19521 S17-Au19521	CP	mg/kg	< 0.1	< 0.1	<u> </u>	30%	Pass	
o-Xylene	S17-Au19521	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Xylenes - Total	S17-Au19521	CP	mg/kg	< 0.3	< 0.3	<1	30%	Pass	
Duplicate	017-7015521	OI .	i iig/kg	<u> </u>	\ 0.0		3070	1 433	
Total Recoverable Hydrocarbons -	2013 NEPM Fract	ione		Result 1	Result 2	RPD			
Naphthalene	S17-Au19521	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
TRH C6-C10	S17-Au19521	CP	mg/kg	< 20	< 20	<1	30%	Pass	
Duplicate	017 7(010021	OI .	i iiig/itg	1 20	\ 20		0070	1 400	
Dupinouto				Result 1	Result 2	RPD			
Conductivity (1:5 aqueous extract				rtoodit	T COOUN 2	111 5			
at 25°C)	S17-Au19521	CP	uS/cm	73	71	4.0	30%	Pass	
pH (1:5 Aqueous extract)	S17-Au19521	CP	pH Units	9.5	9.6	pass	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
% Clay	S17-Au19522	CP	%	7.5	9.1	19	30%	Pass	
Duplicate									
Organochlorine Pesticides				Result 1	Result 2	RPD			
Chlordanes - Total	S17-Au19523	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
4.4'-DDD	S17-Au19523	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDE	S17-Au19523	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDT	S17-Au19523	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
а-ВНС	S17-Au19523	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Aldrin	S17-Au19523	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
b-BHC	S17-Au19523	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
d-BHC	S17-Au19523	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Dieldrin	S17-Au19523	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan I	S17-Au19523	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan II	S17-Au19523	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan sulphate	S17-Au19523	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin	S17-Au19523	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin aldehyde	S17-Au19523	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin ketone	S17-Au19523	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
g-BHC (Lindane)	S17-Au19523	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor	S17-Au19523	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	

Duplicate									
Organochlorine Pesticides				Result 1	Result 2	RPD			
Hexachlorobenzene	S17-Au19523	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Methoxychlor	S17-Au19523	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Toxaphene	S17-Au19523	CP	mg/kg	< 1	< 1	<1	30%	Pass	
Duplicate									•
Polychlorinated Biphenyls				Result 1	Result 2	RPD			
Aroclor-1016	S17-Au19523	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1221	S17-Au19523	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1232	S17-Au19523	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1242	S17-Au19523	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1248	S17-Au19523	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1254	S17-Au19523	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1260	S17-Au19523	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	·
Total PCB*	S17-Au19523	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	·

Comments

Sample Integrity

Custody Seals Intact (if used) N/A Attempt to Chill was evident Yes Sample correctly preserved Yes Appropriate sample containers have been used Yes Sample containers for volatile analysis received with minimal headspace Yes Samples received within HoldingTime Yes Some samples have been subcontracted No

Qualifier Codes/Comments

Code Description

F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).

N01

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes. N04

Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs N07

Authorised By

N02

Nibha Vaidya Analytical Services Manager Alex Petridis Senior Analyst-Metal (VIC) Alex Petridis Senior Analyst-Organic (VIC) Harry Bacalis Senior Analyst-Volatile (VIC) Senior Analyst-Inorganic (VIC) Huona Le Jonathon Angell Senior Analyst-Inorganic (QLD) Joseph Edouard Senior Analyst-Organic (VIC) Matthew Deaves Senior Analyst-Asbestos (WA) Rhys Thomas Senior Analyst-Asbestos (WA)

Glenn Jackson

National Operations Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins. Impt shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins I mgt be liable for consequential changes including, but not limited to, lost profits, damages for relative to meet declarities and other production arising from this report. This document shall be reported used except in full and retrietates only to the letters tested. Unless indicated otherwise, the tests were performed on the samples as received.

JBS & G Australia (NSW) P/L Level 1, 50 Margaret St Sydney NSW 2000

Certificate of Analysis

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention: Scott Burrows

Report 558877-W

Project name ESA 3 SCHOOLS - GREENWICH

Project ID 52885

Received Date Aug 16, 2017

Client Sample ID Sample Matrix Eurofins mgt Sample No.			TB Water S17-Au19528	R20TS Water S17-Au19529
Date Sampled			Aug 16, 2017	Aug 16, 2017
Test/Reference	LOR	Unit	11.09 10, 2011	7.09 10, 2011
Total Recoverable Hydrocarbons - 2013 Ni	EPM Fractions			
Naphthalene ^{N02}	0.01	mg/L	< 0.01	84
TRH C6-C10 less BTEX (F1)N04	0.02	mg/L	< 0.02	-
TRH C6-C10	0.02	mg/L	< 0.02	84
Total Recoverable Hydrocarbons - 1999 N	EPM Fractions	-		
TRH C6-C9	0.02	mg/L	< 0.02	92
ВТЕХ	·			
Benzene	0.001	mg/L	< 0.001	95
Toluene	0.001	mg/L	< 0.001	95
Ethylbenzene	0.001	mg/L	< 0.001	94
m&p-Xylenes	0.002	mg/L	< 0.002	94
o-Xylene	0.001	mg/L	< 0.001	95
Xylenes - Total	0.003	mg/L	< 0.003	95
4-Bromofluorobenzene (surr.)	1	%	93	98

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Total Recoverable Hydrocarbons	Sydney	Aug 16, 2017	7 Day
- Method: TRH C6-C40 - LTM-ORG-2010			
JBS&G Suite 2			
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Sydney	Aug 16, 2017	7 Day
- Method: TRH C6-C36 - LTM-ORG-2010			
BTEX	Sydney	Aug 16, 2017	14 Day

Order No.:

Report #:

Phone:

Fax:

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

558877

02 8245 0300

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Received:

Priority:

Contact Name:

Due:

Perth
2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
NATA # 1261
Site # 23736

Aug 16, 2017 5:00 PM

Aug 23, 2017

Scott Burrows

5 Day

Company Name: JBS & G Australia (NSW) P/L

Address: Level 1, 50 Margaret St

Sydney NSW 2000

Project Name: ESA 3 SCHOOLS - GREENWICH

Project ID: 52885

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

			mple Detail			% Clay	Asbestos - WA guidelines	HOLD	pH (1:5 Aqueous extract)	Total Organic Carbon	Moisture Set	Cation Exchange Capacity	BTEXN and Volatile TRH	JBS&G Suite 2
	ourne Laborato			271				Х	Х	Х	Х	Х	Х	Х
	ney Laboratory												Х	Х
	bane Laborator					Х								\square
	h Laboratory - N		36				Х							
	rnal Laboratory				1									\vdash
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID									
1	BH01_0.05- 0.15	Aug 16, 2017		Soil	S17-Au19518	Х	Х		Х	Х	Х	Х		Х
2	BH02_0.1-0.2	Aug 16, 2017		Soil	S17-Au19519	Х	Х		Х	Х	Х	Х		Х
3	BH03_0.05- 0.15	Aug 16, 2017		Soil	S17-Au19520	Х	х		Х	х	Х	Х		Х
4	BH04_0.1-0.2	Aug 16, 2017		Soil	S17-Au19521	Х	Х		Х	Х	Х	Х		Х
5	BH05_0-0.1	Aug 16, 2017		Soil	S17-Au19522	Х	Х		Х	Х	Х	Х		Х
6	BH06_0.1-0.2	Aug 16, 2017		Soil	S17-Au19523	Х	Х		Х	Х	Х	Х		Х
7	BH07_0.1-0.2	Aug 16, 2017		Soil	S17-Au19524	Х	Х		Х	Х	Х	Х		Х
8	BH08_0.1-0.2	Aug 16, 2017		Soil	S17-Au19525	Х	Х		Х	Х	Х	Х		Х

Eurofins | mgt Unit F3, Building F, 16 Mars Road, Lane Cove West, NSW, Australia, 2066 ABN: 50 005 085 521 Telephone: +61 2 9900 8400 Page 3 of 9
Report Number: 558877-W

Date Reported:Aug 24, 2017

Phone:

Fax:

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

02 8245 0300

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794 Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Company Name: JBS & G Australia (NSW) P/L

Address: Level 1, 50 Margaret St

Sydney NSW 2000

Project Name: ESA 3 SCHOOLS - GREENWICH

Project ID: 52885

 Order No.:
 Received:
 Aug 16, 2017 5:00 PM

 Report #:
 558877
 Due:
 Aug 23, 2017

 Due:
 Aug 23, 2017

 Priority:
 5 Day

Contact Name: Scott Burrows

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

		Samp	ole Detail		% Clay	Asbestos - WA guidelines	HOLD	pH (1:5 Aqueous extract)	Total Organic Carbon	Moisture Set	Cation Exchange Capacity	BTEXN and Volatile TRH	JBS&G Suite 2
Mell	oourne Laborate	ory - NATA Site # 1	254 & 14271				Х	Х	Х	Х	Х	Х	Х
Syd	ney Laboratory	- NATA Site # 182	17									Х	Х
		y - NATA Site # 20			Х								
Pert	h Laboratory - N	NATA Site # 23736				Х							
9	BH09_0.1-0.2	Aug 16, 2017	Soil	S17-Au19526	Х	Х		Х	Х	Х	Х		Х
10	QA20170816	Aug 16, 2017	Soil	S17-Au19527						Х			Х
11	ТВ	Aug 16, 2017	Water	S17-Au19528								Х	
12	TS	Aug 16, 2017	Water	S17-Au19529								Х	
13	BH01_0.2-0.3	Aug 16, 2017	Soil	S17-Au19530			Х						
14	BH02_0.5-0.6	Aug 16, 2017	Soil	S17-Au19531			Х						
15	BH03_0.2-0.3	Aug 16, 2017	Soil	S17-Au19532			Х						
16	BH04_0.5-0.6	Aug 16, 2017	Soil	S17-Au19533			Х						
17	BH04_0.6-0.7	Aug 16, 2017	Soil	S17-Au19534			Х						
18	BH06_0.6-0.7	Aug 16, 2017	Soil	S17-Au19535			Х						
19	BH08_0.3-0.4	Aug 16, 2017	Soil	S17-Au19536			Х						
20	BH08_0.8-0.9	Aug 16, 2017	Soil	S17-Au19537			Х						

Order No.:

Report #:

Phone:

Fax:

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

558877

02 8245 0300

Sydney
Unit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 9900 8400
NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794 Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Company Name: JBS & G Australia (NSW) P/L

Address: Level 1, 50 Margaret St

Sydney NSW 2000

Project Name: ESA 3 SCHOOLS - GREENWICH

Project ID: 52885

Received: Aug 16, 2017 5:00 PM

 Due:
 Aug 23, 2017

 Priority:
 5 Day

Contact Name: Scott Burrows

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

		Sar	mple Detail			% Clay	Asbestos - WA guidelines	HOLD	pH (1:5 Aqueous extract)	Total Organic Carbon	Moisture Set	Cation Exchange Capacity	BTEXN and Volatile TRH	JBS&G Suite 2
Melk	ourne Laborato	ory - NATA Site	# 1254 & 142	71				Χ	Х	Х	Х	Х	Χ	Х
Sydi	ney Laboratory	- NATA Site # 1	8217										Χ	Χ
Bris	bane Laborator	y - NATA Site #	20794			Х								
Pert	h Laboratory - N	ATA Site # 237	36				Х							
21	BH09_0.4-0.5	Aug 16, 2017		Soil	S17-Au19538			Х						
22	CBR03	Aug 16, 2017		Soil	S17-Au19539			Χ						
Test	Counts					9	9	10	9	9	10	9	2	10

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. All biota results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis
- 8. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

 mg/kg: milligrams per kilogram
 mg/L: milligrams per litre

 ug/L: micrograms per litre
 ppm: Parts per million

 ppb: Parts per billion
 %: Percentage

org/100mL: Organisms per 100 millilitres

NTU: Nephelometric Turbidity Units

MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting.

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody

SRA Sample Receipt Advice

QSM Quality Systems Manual ver 5.1 US Department of Defense
CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within

TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR: RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150%-Phenols & PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.1 where no positive PFAS results have been reported have been reviewed and no data was affected.

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- ${\it 3.} \quad {\it Organochlorine Pesticide analysis where reporting LCS data, Toxaphene \& Chlordane are not added to the LCS.}$
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Eurofins | mgt Unit F3, Building F, 16 Mars Road, Lane Cove West, NSW, Australia, 2066 Page 6 of 9

ABN : 50 005 085 521 Telephone: +61 2 9900 8400 Report Number: 558877-W

Quality Control Results

Test			Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Method Blank					, ,				
Total Recoverable Hydrocarbons	- 2013 NEPM Fract	tions							
Naphthalene			mg/L	< 0.01			0.01	Pass	
TRH C6-C10			mg/L	< 0.02			0.02	Pass	
Method Blank									
Total Recoverable Hydrocarbons	- 1999 NEPM Fract	tions							
TRH C6-C9			mg/L	< 0.02			0.02	Pass	
Method Blank									
ВТЕХ									
Benzene			mg/L	< 0.001			0.001	Pass	
Toluene			mg/L	< 0.001			0.001	Pass	
Ethylbenzene			mg/L	< 0.001			0.001	Pass	
m&p-Xylenes			mg/L	< 0.002			0.002	Pass	
o-Xylene			mg/L	< 0.001			0.001	Pass	
Xylenes - Total			mg/L	< 0.003			0.003	Pass	
LCS - % Recovery									
Total Recoverable Hydrocarbons	- 2013 NEPM Fract	tions							
Naphthalene			%	82			70-130	Pass	
TRH C6-C10			%	102			70-130	Pass	
LCS - % Recovery									
Total Recoverable Hydrocarbons	- 1999 NEPM Fract	tions							
TRH C6-C9			%	106			70-130	Pass	
LCS - % Recovery					,				
ВТЕХ									
Benzene			%	91			70-130	Pass	
Toluene			%	89			70-130	Pass	
Ethylbenzene			%	89			70-130	Pass	
m&p-Xylenes			%	88			70-130	Pass	
o-Xylene			%	88			70-130	Pass	
Xylenes - Total			%	88			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery									
Total Recoverable Hydrocarbons	- 2013 NEPM Fract	ions		Result 1					
Naphthalene	M17-Au22436	NCP	%	92			70-130	Pass	
TRH C6-C10	M17-Au22436	NCP	%	73			70-130	Pass	
Spike - % Recovery									
Total Recoverable Hydrocarbons	- 1999 NEPM Fract	ions		Result 1					
TRH C6-C9	M17-Au22436	NCP	%	71			70-130	Pass	
Spike - % Recovery									
Opine 70 Neodovery									
BTEX				Result 1					
	M17-Au22436	NCP	%	Result 1			70-130	Pass	
ВТЕХ	M17-Au22436 M17-Au22436	NCP NCP	%	1			70-130 70-130	Pass Pass	
BTEX Benzene				82					
BTEX Benzene Toluene	M17-Au22436	NCP	%	82 80			70-130	Pass	
BTEX Benzene Toluene Ethylbenzene	M17-Au22436 M17-Au22436	NCP NCP	% %	82 80 79			70-130 70-130	Pass Pass	
BTEX Benzene Toluene Ethylbenzene m&p-Xylenes	M17-Au22436 M17-Au22436 M17-Au22436	NCP NCP NCP	% % %	82 80 79 80			70-130 70-130 70-130	Pass Pass Pass	
BTEX Benzene Toluene Ethylbenzene m&p-Xylenes o-Xylene	M17-Au22436 M17-Au22436 M17-Au22436 M17-Au22436	NCP NCP NCP	% % % %	82 80 79 80 81			70-130 70-130 70-130 70-130	Pass Pass Pass Pass	Qualifying Code
BTEX Benzene Toluene Ethylbenzene m&p-Xylenes o-Xylene Xylenes - Total	M17-Au22436 M17-Au22436 M17-Au22436 M17-Au22436 M17-Au22436	NCP NCP NCP NCP NCP	% % % %	82 80 79 80 81 80			70-130 70-130 70-130 70-130 70-130 Acceptance	Pass Pass Pass Pass Pass Pass	
BTEX Benzene Toluene Ethylbenzene m&p-Xylenes o-Xylene Xylenes - Total Test	M17-Au22436 M17-Au22436 M17-Au22436 M17-Au22436 M17-Au22436 Lab Sample ID	NCP NCP NCP NCP NCP QA Source	% % % %	82 80 79 80 81 80	Result 2	RPD	70-130 70-130 70-130 70-130 70-130 Acceptance	Pass Pass Pass Pass Pass Pass	
BTEX Benzene Toluene Ethylbenzene m&p-Xylenes o-Xylene Xylenes - Total Test Duplicate	M17-Au22436 M17-Au22436 M17-Au22436 M17-Au22436 M17-Au22436 Lab Sample ID	NCP NCP NCP NCP NCP QA Source	% % % %	82 80 79 80 81 80 Result 1	Result 2 < 0.01	RPD <1	70-130 70-130 70-130 70-130 70-130 Acceptance	Pass Pass Pass Pass Pass Pass	

Duplicate									
Total Recoverable Hydroc	arbons - 1999 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH C6-C9	M17-Au22046	NCP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
Duplicate									
ВТЕХ				Result 1	Result 2	RPD			
Benzene	M17-Au22046	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Toluene	M17-Au22046	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Ethylbenzene	M17-Au22046	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
m&p-Xylenes	M17-Au22046	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
o-Xylene	M17-Au22046	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Xylenes - Total	M17-Au22046	NCP	mg/L	< 0.003	< 0.003	<1	30%	Pass	

Comments

Sample Integrity

Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code Description

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

N02

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes. N04

R20 This sample is a Trip Spike and therefore all results are reported as a percentage

Authorised By

Nibha Vaidya Analytical Services Manager

Glenn Jackson

National Operations Manager

Final report - this Report replaces any previously issued Report

- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins; Imgt shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins; Imgt be liable for consequential damages including, but not limited to, lost profits, damages for relative to meet decidines and lost production arising from this report. This document shall be reproducted or expense indicated otherwise, the tests were performed on the sampless are executing. Dut not limited to, lost profits, damages for seid sindicated otherwise, the tests were performed on the sampless are executing.

CHAIN OF CUSTODY

PROJECT NO.: 53033				LABORATORY BATCH NO.:	
S	15		,	SAMPLERS: NWEIU	
DATE NEEDED BY: Sto TAT				QC LEVEL: NEPM (2013)	
5 0300	Perth: 08 9488 0100 Brisbane: 07	8 0100 Br	sbane: 07 3112 2688		
SEND REPORT & INVOICE TO: (1) adminnsw@jbsg.com.au; (2)) adminnsw@	jbsg.com.au	; (2)@jbsg.com.au;	sg.com.au; (3)N.N.N. e.jbsg.com.au	
COMMENTS / SPECIAL HANDLING / STORAGE OR DISPOSAL:	OR DISPOSAL:			H P B B	ASBEST ANALY ANALY
SAMPLE ID	MATRIX DATE	TE TIME	TYPE & PRESERVATIVE	BT PA OC PC	
BHID 0.0-0.1 S	8/41 1:05	7,	Jan + bag + 14	XXXXXXXXXX	
- 0.1-0.2		+		XXXXXXXXXX	
-0.4-0.5				*	
6.0 -8.0 -				X	
BH12-0-1-0-2					
S-0-4:0 -			4	XXXXXXXXXXX	
-0.9-1.0					
-1.4-1.5	1				
-1.9-1.0				*	
BH13 - 0.1-0.2			+	**************************************	
- 0.9-1.0	5				
BH14-0.1-0.2	à,			X	2
91920170817			Jar only	XXXXX	;
C180 C10(2) C.					
KB10170817	Wak!		bottes + VIND	X	
#180410K8T				× ×	
TS 20170817				**	
4130110512	<-		0	X	
RELINQUISHED BY:			METHOD OF SHIPMENT:	RECEIVED BY:	FOR RECEIVING LAB USE ONLY:
DATE:		CONSIGNMENT NOTE NO.	I NOTE NO.	Cobrews	COOLER SEAL – Yes No Intact Broken
NWEILS	118/17	TRANSPORT CO), s	1-35,0	COOLER TEMP deg C
NAME: DATE:		CONSIGNMENT NOTE NO.	T NOTE NO.	NAME: DATE: COOLER SEAL -	EAL – Yes No Intact Broken
OF:	· I = Soil Jar: R = Glas	TRANSPORT CO	C Acid Prsvd.: C = Sodium Hydroxide Prsvd: VC:	DF: TRANSPORT CO TRANSPORT C	COOLER TEMP deg C ric Acid Prsvd; Z = Zinc Prsvd; E = EDTA Prsvd; ST = Sterile Bottle; O = Other
Container & Preservative Codes: P = Plastic:	: J = Soll Jar: B = Glas	s Bottle: N = Nitr	C ACID Prsvd.: C = Sodium Hydroxide Prsvd; VC =	HYDIOCITIC ACID FISVO VIAI, VS - SUITUTIC ACID FISVO VIAI, S - SUITUTIC ACID FISV	And t - tille 119And t - to 10 119And of - occurre count, o - occurre

Container & Preservative Codes; P = Plastic; J = Soil Jar; B = Glass Bottle; N = Nitric Acid Prsvd.; IMSO FormsO13 - Chain of Custody - Generic

359175

559175.

Enviro Sample Vic

From:

Nibha Vaidya

Sent:

Friday, 18 August 2017 4:52 PM

To:

Enviro Sample Vic

Subject:

FW: Eurofins | mgt Sample Receipt Advice - Report 559175 : Site 3 SCHOOLS

(53033)

Follow Up Flag:

Follow up

Additional TCLP analysis please, guys. Add them to the same report if possible.

Flag Status:

Flagged

Jorathan

Kind Regards,

Nibha Vaidya

Phone: +61 2 9900 8415 Mobile: +61 499 900 805

Email: NibhaVaidya@eurofins.com

From: Scott Burrows [mailto:sburrows@jbsg.com.au]

Sent: Friday, 18 August 2017 4:23 PM

To: Nibha Vaidva

Subject: FW: Eurofins | mgt Sample Receipt Advice - Report 559175 : Site 3 SCHOOLS (53033)

Hi Nibha,

In addition to the attached analysis, can I also get TCLP for the metals and PAHs for samples

BH10 (0.0-0.1)

Au 22053-22057. D.S. \$ 1718.

BH11 (0.0-0.2)

BH12 (0.4-0.5)

BH13 (0.1-0.2)

BH14 (0.1-0.2)

61282.

These are all on standard turnaround times.

Please let me know should there be any issues.

Kind Regards,

Scott

Scott Burrows | Senior Environmental Consultant | JBS&G

Sydney | Melbourne | Adelaide | Perth | Brisbane

Level 1, 50 Margaret Street Sydney NSW 2000

T: 02 8245 0300 | M: 0412 003 993 | www.jbsg.com.au

Contaminated Land | Groundwater Remediation | Environmental Impact Assessment | Auditing and Compliance | Hygiene and Hazardous Materials | Due Diligence and Liability

This email message is intended only for the addressee(s) and contains information that may be confidential and/or copyright. If you are not the intended recipient please delete this email immediately. Use, disclosure or reproduction of this email by anyone other than the intended recipient(s) is strictly prohibited. No representation is made that this email or any attachments are free of viruses and the recipient is responsible for undertaking appropriate virus scanning. Any advice provided in or attached to this email is subject to limitations.

From: envirosamplevic@eurofins.com [mailto:envirosamplevic@eurofins.com]

Sent: Friday, 18 August 2017 2:42 PM

To: Scott Burrows <sburrows@jbsg.com.au>

Melbourne Melbourne
3-5 Kingston Town Close
Oakleigh Vic 3166
Phone: +61 3 8564 5000
NATA # 1261
Site # 1254 & 14271

Unit F3, Building F 1/21 Smallwood Place 16 Mars Road Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Perth Z/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

ABN - 50 005 085 521

e.mail: EnviroSales@eurofins.com

web: www.eurofins.com.au

Sample Receipt Advice

JBS & G Australia (NSW) P/L Company name:

Contact name: Scott Burrows 3 SCHOOLS Project name: Project ID: 53033

COC number: Not provided Turn around time: 5 Day

Aug 17, 2017 1:39 PM Date/Time received:

Eurofins | mgt reference: 559175

Sample information

- \mathbf{V} A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- \mathbf{V} Sample Temperature of a random sample selected from the batch as recorded by Eurofins | mgt Sample Receipt : 15 degrees Celsius.
- \mathbf{V} All samples have been received as described on the above COC.
- \square COC has been completed correctly.
- \square Attempt to chill was evident.
- \mathbf{V} Appropriately preserved sample containers have been used.
- \mathbf{V} All samples were received in good condition.
- \square Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- \mathbf{V} Appropriate sample containers have been used.
- \mathbf{V} Sample containers for volatile analysis received with zero headspace.
- \boxtimes Some samples have been subcontracted.
- N/A Custody Seals intact (if used).

Notes

Sample BH12 2.3-2.4 received extra & placed on HOLD

Contact notes

If you have any questions with respect to these samples please contact:

Nibha Vaidya on Phone: +61 (2) 9900 8400 or by e.mail: Nibha Vaidya@eurofins.com

Results will be delivered electronically via e.mail to Scott Burrows - SBurrows@jbsg.com.au.

Environmental Laboratory

Water Analysis Soil Contamination Analysis

NATA Accreditation Stack Emission Sampling & Analysis Trade Waste Sampling & Analysis Groundwater Sampling & Analysis

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney
Unit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 9900 8400
NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Company Name: JBS & G Australia (NSW) P/L

Address: Level 1, 50 Margaret St

Sydney NSW 2000

Project Name: 3 SCHOOLS Project ID: 53033 **Order No.:** Received: Aug 17, 2017 1:39 PM

 Report #:
 559175
 Due:
 Aug 24, 2017

 Phone:
 02 8245 0300
 Priority:
 5 Day

Fax: Contact Name: Scott Burrows

% CI	Asbe	ТОН	рН (Total	Poly	Orga	Poly	VSN	Meta	вте	вте	Mois	Catio	Total	вте	вте			

		Sa	mple Detail			Clay	bestos - WA guidelines	DLD	l (1:5 Aqueous extract)	tal Organic Carbon	llycyclic Aromatic Hydrocarbons	ganochlorine Pesticides	lychlorinated Biphenyls	SA Leaching Procedure	etals M8	EX	EX	bisture Set	ation Exchange Capacity	ital Recoverable Hydrocarbons	EXN and Volatile TRH	EXN and Volatile TRH
Mell	ourne Laborato	ory - NATA Site	# 1254 & 142	271				Х	Х	Х	Х	Х	Х	Х	Х	Х		Х	Х	Х	Х	Х
Syd	ney Laboratory	- NATA Site # 1	8217				Х										Х			Х	Х	Х
Bris	bane Laborator	y - NATA Site #	20794			Х																
Pert	h Laboratory - N	NATA Site # 237	36																			
Exte	rnal Laboratory	,																				
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID																	
1	BH10_0.0-0.1	Aug 17, 2017		Soil	M17-Au22053	Х	Х		Х	Х	Х	Х	Х		Х	Х		Х	Х	Х		
2	BH11_0.1-0.2	Aug 17, 2017		Soil	M17-Au22054	Х	Х		Х	Х	Х	Х	Х		Х	Х		Х	Х	Х		
3	BH12_0.4-0.5	Aug 17, 2017		Soil	M17-Au22055	Х	Х		Х	Х	Х	Х	Х		Х	Х		Х	Х	Х	igsquare	
4	BH13_0.1-0.2	Aug 17, 2017		Soil	M17-Au22056	Х	Х		Х	Х	Х	Х	Х		Х	Х		Х	Х	Х	Ш	
5	BH14_0.1-0.2	Aug 17, 2017		Soil	M17-Au22057	Х	Х		Х	Х	Х	Х	Х		Х	Х		Х	Х	Х	Ш	
6	QA20170817	Aug 17, 2017		Soil	M17-Au22058						Х	Х			Х	Х		Х		Х	Ш	
7	RB20170817	Aug 17, 2017		Water	M17-Au22059						Х	Х			Х		Χ			Х	igsquare	
8	TB20170817	Aug 17, 2017		Water	M17-Au22060																ш	Х
9	TS20170817	Aug 17, 2017		Water	M17-Au22061																X	

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney
Unit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 9900 8400
NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794 Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Company Name: JBS & G Australia (NSW) P/L

Address: Level 1, 50 Margaret St

Sydney NSW 2000

Project Name: 3 SCHOOLS Project ID: 53033
 Order No.:
 Received:
 Aug 17, 2017 1:39 PM

 Report #:
 559175
 Due:
 Aug 24, 2017

Phone: 02 8245 0300 **Priority:** 5 Day

Fax: Contact Name: Scott Burrows

Project ID: 53033													Euro	ofins	mgt	Analy	/tical	Servi	ces Manager : Nibha Vaidya
Sample Detail		% Clay	Asbestos - WA guidelines	HOLD	pH (1:5 Aqueous extract)	Total Organic Carbon	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Polychlorinated Biphenyls	USA Leaching Procedure	Metals M8	втех	втех	Moisture Set	Cation Exchange Capacity	Total Recoverable Hydrocarbons	BTEXN and Volatile TRH	BTEXN and Volatile TRH	
Melbourne Laboratory - NATA Site # 1254 & 14271				Х	Х	Х	Х	Х	Х	Х	Х	Х		Х	Х	Х	Х	Х	
Sydney Laboratory - NATA Site # 18217			Х										Х			Х	Х	Х	
Brisbane Laboratory - NATA Site # 20794		Х																	1
Perth Laboratory - NATA Site # 23736																			
	M17-Au22062			Х															I
	M17-Au22063			Х															1
	M17-Au22064			Х															ı
	M17-Au22065			Х															ı
	M17-Au22066			Х															ı
	M17-Au22067			Х															ı
	M17-Au22068			Х															ı
	M17-Au22069			Х															ı
3 /	M17-Au22070			Х															ı
	M17-Au22071			Х															I
	M17-Au23735						Х			Х	Х								I
21 BH11_0.0-0.2 Aug 17, 2017 US Leachate	M17-Au23736						Х			Х	Х								

Phone:

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney
Unit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 9900 8400
NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794 Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Company Name: JBS & G Australia (NSW) P/L

Address: Level 1, 50 Margaret St

Sydney NSW 2000

Project Name: 3 SCHOOLS

Project ID: 53033

 Order No.:
 Received:
 Aug 17, 2017 1:39 PM

 Report #:
 559175
 Due:
 Aug 24, 2017

559175 **Due:** Aug 24, 2017 02 8245 0300 **Priority:** 5 Day

Fax: Contact Name: Scott Burrows

Project ID: 53033												Euro	ofins	mgt	Analy	ytical	Servi	ices Manager : Nibha Vaidya
Sample Detail	% Clay	Asbestos - WA guidelines	HOLD	pH (1:5 Aqueous extract)	Total Organic Carbon	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Polychlorinated Biphenyls	USA Leaching Procedure	Metals M8	втех	втех	Moisture Set	Cation Exchange Capacity	Total Recoverable Hydrocarbons	BTEXN and Volatile TRH	BTEXN and Volatile TRH	
Melbourne Laboratory - NATA Site # 1254 & 14271			Х	Х	Х	Х	Х	Х	Х	Х	X		Х	X	Х	Х	X	
Sydney Laboratory - NATA Site # 18217		Х										Х			Х	Х	Х	
Brisbane Laboratory - NATA Site # 20794	Χ																	
Perth Laboratory - NATA Site # 23736																		
22 BH12_0.4-0.5 Aug 17, 2017 US Leachate M17-Au23737						Х			Х	Х								
23 BH13_0.1-0.2 Aug 17, 2017 US Leachate M17-Au23738						Х			Х	Х								
24 BH14_0.1-0.2 Aug 17, 2017 US Leachate M17-Au23739						Х			Х	Х								
Test Counts	5	5	10	5	5	12	7	5	5	12	7	7	6	5	7	2	2	

Certificate of Analysis

NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025—Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

JBS & G Australia (NSW) P/L Level 1, 50 Margaret St Sydney NSW 2000

Attention: Scott Burrows
Report 559175-AID
Project Name 3 SCHOOLS

Project ID 53033

Received Date Aug 17, 2017

Date Reported Aug 24, 2017

Methodology:

Asbestos Fibre Identification

Conducted in accordance with the Australian Standard AS 4964 – 2004: Method for the Qualitative Identification of Asbestos in Bulk Samples and in-house Method LTM-ASB-8020 by polarised light microscopy (PLM) and dispersion staining (DS) techniques.

NOTE: Positive Trace Analysis results indicate the sample contains detectable respirable fibres.

Unknown Mineral Fibres

Mineral fibres of unknown type, as determined by PLM with DS, may require another analytical technique, such as Electron Microscopy, to confirm unequivocal identity.

NOTE: While Actinolite, Anthophyllite and Tremolite asbestos may be detected by PLM with DS, due to variability in the optical properties of these materials, AS4964 requires that these are reported as UMF unless confirmed by an independent technique.

Subsampling Soil Samples The whole sample submitted is first dried and then passed through a 10mm sieve followed by a 2mm sieve. All fibrous matter greater than 10mm, greater than 2mm as well as the material passing through the 2mm sieve are retained and analysed for the presence of asbestos. If the sub 2mm fraction is greater than approximately 30 to 60g then a subsampling routine based on ISO 3082:2009(F) is employed.

sampling routine based on ISO 3082:2009(E) is employed.

NOTE: Depending on the nature and size of the soil sample, the sub-2 mm residue material may need to be sub-sampled for trace analysis, in accordance with AS 4964-2004.

Bonded asbestoscontaining material (ACM) The material is first examined and any fibres isolated for identification by PLM and DS. Where required, interfering matrices may be removed by disintegration using a range of heat, chemical or physical treatments, possibly in combination. The resultant material is then further examined in accordance with AS 4964 - 2004. NOTE: Even after disintegration it may be difficult to detect the presence of asbestos in some asbestos-containing bulk materials using PLM and DS. This is due to the low grade or small length or diameter of the asbestos fibres present in the material, or to the fact that very fine fibres have been distributed intimately throughout the materials. Vinyl/asbestos floor tiles, some asbestos-containing sealants and mastics, asbestos-containing epoxy resins and some ore samples are examples of these types of material, which are difficult to analyse.

Limit of Reporting

The performance limitation of the AS4964 method is around 0.1 g/kg (0.01% (w/w)). Where no asbestos is found by PLM and DS, including Trace Analysis where required, this is considered to be at the nominal reporting limit of 0.01 % (w / w). The examination of large sample sizes(500 mL is recommended) may improve the likelihood of identifying ACM in the > 2mm fraction. The NEPM screening level of 0.001 % (w / w) asbestos in soil for FA(friable asbestos) and AF(asbestos fines) then applies where they are able to be quantified by gravimetric procedures. This quantitative screening is not generally applicable to FF(free fibres) and results of Trace Analysis are referred.

NOTE: NATA News March 2014, p.7, states in relation to AS4964: "This is a qualitative method with a nominal reporting limit of 0.01%" and that currently in Australia "there is no validated method available for the quantification of asbestos". Accordingly, NATA Accreditation does not cover the performance of this service (indicated with an asterisk). This report is consistent with the analytical procedures and reporting recommendations in the National Environment Protection (Assessment of Site Contamination) Measure, 2013 (as amended) and the Western Australia Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated Sites in Western Australia, 2009, including supporting document Recommended Procedures for Laboratory Analysis of Asbestos in Soil, June 2011.

Report Number: 559175-AID

NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025–Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Project Name 3 SCHOOLS

Project ID 53033

Date SampledAug 17, 2017Report559175-AID

Client Sample ID	Eurofins mgt Sample No.	Date Sampled	Sample Description	Result
BH10_0.0-0.1	17-Au22053	Aug 17, 2017	Approximate Sample 458g Sample consisted of: Brown coarse grain soil and rocks	FA: Chrysotile asbestos detected in weathered fibre cement fragments. Approximate raw weight of FA = 0.14g Estimated asbestos content in FA = 0.072g* Total estimated asbestos concentration in FA = 0.016% w/w* Organic fibre detected. M11
BH11_0.1-0.2	17-Au22054	Aug 17, 2017	Approximate Sample 821g Sample consisted of: Brown coarse grain soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No respirable fibres detected. ^{M11}
BH12_0.4-0.5	17-Au22055	Aug 17, 2017	Approximate Sample 497g Sample consisted of: Brown coarse grain soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No respirable fibres detected. M11
BH13_0.1-0.2	17-Au22056	Aug 17, 2017	Approximate Sample 566g Sample consisted of: Brown coarse grain soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No respirable fibres detected. ^{M11}
BH14_0.1-0.2	17-Au22057	Aug 17, 2017	Approximate Sample 413g Sample consisted of: Brown coarse grain soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No respirable fibres detected. M11

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

DescriptionTesting SiteExtractedHolding TimeAsbestos - LTM-ASB-8020SydneyAug 18, 2017Indefinite

Report Number: 559175-AID

Melbourne

3-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 SydneyBrisbaneUnit F3, Building F1/21 Small16 Mars RoadMurarrie C

Lane Cove West NSW 2066

Phone: +61 2 9900 8400

NATA # 1261 Site # 18217

1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794 Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Company Name: JBS & G Australia (NSW) P/L Order No.: Received: Aug 17, 2017 1:39 PM

 Address:
 Level 1, 50 Margaret St
 Report #:
 559175
 Due:
 Aug 24, 2017

 Sydney
 Phone:
 02 8245 0300
 Priority:
 5 Day

NSW 2000 Fax: Contact Name: Scott Burrows

Project Name: 3 SCHOOLS

Project ID: 53033

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

		Sa	mple Detail			% Clay	Asbestos - WA guidelines	HOLD	pH (1:5 Aqueous extract)	Total Organic Carbon	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Polychlorinated Biphenyls	USA Leaching Procedure	Metals M8	втех	втех	Moisture Set	Cation Exchange Capacity	Total Recoverable Hydrocarbons	BTEXN and Volatile TRH	BTEXN and Volatile TRH
Mell	ourne Laborato				Х	Χ	Χ	Х	Χ	Х	Х	Х	Х		Х	Х	Х	Х	Х			
Syd	ney Laboratory	- NATA Site # 1	8217				Х										Х			Х	Х	Х
Bris	bane Laboratory	y - NATA Site #	20794			Χ																
Pert	h Laboratory - N	NATA Site # 237	36																			
Exte	rnal Laboratory	,																				
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID																	
1	BH10_0.0-0.1	Aug 17, 2017		Soil	M17-Au22053	Х	Х		Χ	Χ	Х	Х	Х		Х	Х		Х	Х	Х		
2	BH11_0.1-0.2	Aug 17, 2017		Soil	M17-Au22054	Х	Х		Х	Х	Х	Х	Х		Х	Х		Х	Х	Х		
3	BH12_0.4-0.5	Aug 17, 2017		Soil	M17-Au22055	Х	Х		Х	Х	Х	Х	Х		Х	Х		Х	Х	Х		
4	BH13_0.1-0.2	Aug 17, 2017		Soil	M17-Au22056	Х	Х		Х	Х	Х	Х	Х		Х	Х		Х	Х	Х		
5	BH14_0.1-0.2	Aug 17, 2017		Soil	M17-Au22057	Х	Х		Х	Х	Х	Х	Х		Х	Х		Х	Х	Х		
6	QA20170817	Aug 17, 2017		Soil	M17-Au22058						Х	Х			Х	Х		Х		Х		
7	RB20170817	Aug 17, 2017		Water	M17-Au22059						Х	Х			Х		Х			Х		
8	TB20170817	Aug 17, 2017		Water	M17-Au22060																	Х
9	TS20170817	Aug 17, 2017		Water	M17-Au22061																Х	

Page 4 of 8

Order No.:

Report #:

Phone:

Fax:

Melbourne

Site # 1254 & 14271

559175

02 8245 0300

3-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400

NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794 Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Company Name: JBS & G Australia (NSW) P/L

Address:

Level 1, 50 Margaret St

Sydney

NSW 2000

Project Name: Project ID:

3 SCHOOLS

53033

Received: Aug 17, 2017 1:39 PM

Due: Aug 24, 2017 **Priority:** 5 Day

Contact Name: Scott Burrows

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

		Sam	ple Detail		% Clay	Asbestos - WA guidelines	HOLD	pH (1:5 Aqueous extract)	Total Organic Carbon	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Polychlorinated Biphenyls	USA Leaching Procedure	Metals M8	втех	втех	Moisture Set	Cation Exchange Capacity	Total Recoverable Hydrocarbons	BTEXN and Volatile TRH	BTEXN and Volatile TRH
Mell	oourne Laborato	ory - NATA Site #	1254 & 14271				Х	Χ	Χ	Х	Х	Х	Х	Х	Х		Χ	Х	Х	Х	Х
Syd	ney Laboratory	- NATA Site # 182	217			Х										Χ			Х	Х	Х
Bris	bane Laboratory	y - NATA Site # 2	0794		Χ																
Pert		IATA Site # 2373	T.																		
10	BH11_0.4-0.5		M17-Au22062			Х															
11	BH11_0.8-0.9		M17-Au22063			Х														\longrightarrow	
12	BH12_0.1-0.2		M17-Au22064			Х														\longrightarrow	
13	BH12_0.9-1.0	Aug 17, 2017	Soil	M17-Au22065			Х														\longrightarrow
14	BH12_1.4-1.5		Soil	M17-Au22066			Х													\vdash	
15	BH12_1.9-2.0		Soil	M17-Au22067			Х													\vdash	
16	BH13_0.4-0.5		Soil	M17-Au22068			Х													\vdash	
17	BH13_0.9-1.0		Soil	M17-Au22069			Х														\vdash
18		Aug 17, 2017	Soil	M17-Au22070			Х													—	\vdash
19	BH12_2.3-2.4		Soil	M17-Au22071			Х														\vdash
20	BH10_0.0-0.1	Aug 17, 2017	US Leachate	M17-Au23735						Х			Х	Х							\square
21	BH11_0.0-0.2	Aug 17, 2017	US Leachate	M17-Au23736						Х			Х	Χ							

Page 5 of 8

3 SCHOOLS

Company Name:

Project Name:

Address:

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au

Melbourne

3-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Brisbane Unit F3, Building F

Sydney

16 Mars Road

Lane Cove West NSW 2066

Phone: +61 2 9900 8400

NATA # 1261 Site # 18217

1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

JBS & G Australia (NSW) P/L Order No.: Received: Aug 17, 2017 1:39 PM

Level 1, 50 Margaret St Report #: 559175 Due: Aug 24, 2017

Sydney Phone: 02 8245 0300 Priority: 5 Day NSW 2000 Fax: **Contact Name:** Scott Burrows

Project ID: 53033 Eurofins | mgt Analytical Services Manager : Nibha Vaidya

		Sa	mple Detail			% Clay	Asbestos - WA guidelines	HOLD	pH (1:5 Aqueous extract)	Total Organic Carbon	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Polychlorinated Biphenyls	USA Leaching Procedure	Metals M8	втех	втех	Moisture Set	Cation Exchange Capacity	Total Recoverable Hydrocarbons	BTEXN and Volatile TRH	BTEXN and Volatile TRH	
Mel	bourne Laborato	ory - NATA Site	# 1254 & 1427	71				Х	Χ	Χ	Х	Х	Х	Х	Х	Х		Х	Х	Х	Х	Х	
Syd	ney Laboratory	- NATA Site # 1	8217				Χ										Х			Х	Х	Х	
Bris	bane Laboratory	y - NATA Site #	20794			Χ																	
Per	th Laboratory - N	IATA Site # 237	36																				
22	BH12_0.4-0.5	Aug 17, 2017		US Leachate	M17-Au23737						Х			Х	Х								
23	BH13_0.1-0.2			US Leachate	M17-Au23738						Х			Х	Х								
24	BH14_0.1-0.2			US Leachate	M17-Au23739						Х			Х	Х								
Tes	t Counts					5	5	10	5	5	12	7	5	5	12	7	7	6	5	7	2	2	

Eurofins | mgt 2-5, Kingston Town Close, Oakleigh, VIC, Australia, 3166 ABN: 50 005 085 521 Telephone: +61 3 8564 5000

Page 6 of 8

Internal Quality Control Review and Glossary

General

- 1. QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated
- 3. Samples were analysed on an 'as received' basis
- 4. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported. Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

Units

% w/w: weight for weight basis grams per kilogram
Filter loading: fibres/100 graticule areas

Reported Concentration: fibres/mL Flowrate: L/min

Terms

ΑF

Date Reported: Aug 24, 2017

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis

LOR Limit of Reporting
COC Chain of Custody
SRA Sample Receipt Advice

ISO International Standards Organisation

AS Australian Standards

WA DOH Western Australia Department of Health

NOHSC National Occupational Health and Safety Commission

ACM Bonded asbestos-containing material means any material containing more than 1% asbestos and comprises asbestos-containing-material which is in sound condition,

although possibly broken or fragmented, and where the asbestos is bound in a matrix such as cement or resin. Common examples of ACM include but are not limited to: pipe and boiler insulation, sprayed-on fireproofing, troweled-on acoustical plaster, floor tile and mastic, floor linoleum, transite shingles, roofing materials, wall and ceiling plaster, ceiling tiles, and gasket materials. This term is restricted to material that cannot pass a 7 mm x 7 mm sieve. This sieve size is selected because it approximates the thickness of common asbestos cement sheeting and for fragments to be smaller than this would imply a high degree of damage and hence potential

for fibre release.

FA FA comprises friable asbestos material and includes severely weathered cement sheet, insulation products and woven asbestos material. This type of friable asbestos

is defined here as asbestos material that is in a degraded condition such that it can be broken or crumbled by hand pressure. This material is typically unbonded or

was previously bonded and is now significantly degraded (crumbling).

PACM Presumed Asbestos-Containing Material means thermal system insulation and surfacing material found in buildings, vessels, and vessel sections constructed no later

than 1980 that are assumed to contain greater than one percent asbestos but have not been sampled or analyzed to verify or negate the presence of asbestos.

Asbestos fines (AF) are defined as free fibres, or fibre bundles, smaller than 7mm. It is the free fibres which present the greatest risk to human health, although very small fibres (< 5 microns in length) are not considered to be such a risk. AF also includes small fragments of bonded ACM that pass through a 7 mm x 7 mm sieve.

(Note that for bonded ACM fragments to pass through a 7 mm x 7 mm sieve implies a substantial degree of damage which increases the potential for fibre release.)

AC Asbestos cement means a mixture of cement and asbestos fibres (typically 90:10 ratios).

Report Number: 559175-AID

Comments

Samples Au22053, Au22055 & Au22057 received were less than the nominal 500mL as recommended in Section 4.10 of the NEPM Schedule B1 - Guideline on Investigation Levels for Soil and Groundwater.

Sample Integrity

Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code Description N/A Not applicable

M11 NATA accreditation does not cover the performance of this service.

Asbestos Counter/Identifier:

Sayeed Abu Senior Analyst-Asbestos (NSW)

Authorised by:

Glenn Jackson

National Operations Manager

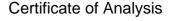
Final Report - this report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Uncertainty data is available on request

Eurofins; Img shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins; Img be liable for consequential damages including, but not limited to, lost profits, damages for stallar to more ideadlines and lost production arising from this report. This document shall be reported evecept in full and relates only to the letters indicated otherwise, the tests were performed on the samples as received.

Report Number: 559175-AID



JBS & G Australia (NSW) P/L Level 1, 50 Margaret St Sydney NSW 2000

Attention: **Scott Burrows**

559175-L Report Project name 3 SCHOOLS Project ID 53033 Received Date Aug 17, 2017

NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Client Sample ID			BH10_0.0-0.1	BH11_0.0-0.2	BH12_0.4-0.5	BH13_0.1-0.2
Sample Matrix			US Leachate	US Leachate	US Leachate	US Leachate
Eurofins mgt Sample No.			M17-Au23735	M17-Au23736	M17-Au23737	M17-Au23738
Date Sampled			Aug 17, 2017	Aug 17, 2017	Aug 17, 2017	Aug 17, 2017
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons						
Acenaphthene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Acenaphthylene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Anthracene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benz(a)anthracene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzo(a)pyrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzo(b&j)fluoranthene ^{N07}	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzo(g.h.i)perylene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzo(k)fluoranthene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Chrysene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Dibenz(a.h)anthracene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Fluoranthene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Fluorene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Indeno(1.2.3-cd)pyrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Naphthalene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Phenanthrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Pyrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Total PAH*	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
2-Fluorobiphenyl (surr.)	1	%	136	106	122	103
p-Terphenyl-d14 (surr.)	1	%	134	118	121	105
Heavy Metals						
Arsenic	0.01	mg/L	< 0.01	< 0.01	< 0.01	< 0.01
Cadmium	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
Chromium	0.01	mg/L	< 0.01	< 0.01	< 0.01	< 0.01
Copper	0.01	mg/L	< 0.01	< 0.01	< 0.01	< 0.01
Lead	0.01	mg/L	< 0.01	< 0.01	5.8	< 0.01
Mercury	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Nickel	0.01	mg/L	< 0.01	< 0.01	< 0.01	< 0.01
Zinc	0.01	mg/L	0.07	0.01	0.09	0.03
USA Leaching Procedure						
Leachate Fluid ^{C01}		comment	1.0	1.0	1.0	1.0
pH (initial)	0.1	pH Units	4.3	5.1	5.2	5.2
pH (Leachate fluid)	0.1	pH Units	5.0	5.0	5.0	5.0
pH (off)	0.1	pH Units	5.2	5.1	5.0	5.1
pH (USA HCI addition)	0.1	pH Units	NA	1.9	1.9	2.0

Client Sample ID			BH14_0.1-0.2
Sample Matrix			US Leachate
Eurofins mgt Sample No.			M17-Au23739
Date Sampled			Aug 17, 2017
Test/Reference	LOR	Unit	
Polycyclic Aromatic Hydrocarbons	·		
Acenaphthene	0.001	mg/L	< 0.001
Acenaphthylene	0.001	mg/L	< 0.001
Anthracene	0.001	mg/L	< 0.001
Benz(a)anthracene	0.001	mg/L	< 0.001
Benzo(a)pyrene	0.001	mg/L	< 0.001
Benzo(b&j)fluoranthene ^{N07}	0.001	mg/L	< 0.001
Benzo(g.h.i)perylene	0.001	mg/L	< 0.001
Benzo(k)fluoranthene	0.001	mg/L	< 0.001
Chrysene	0.001	mg/L	< 0.001
Dibenz(a.h)anthracene	0.001	mg/L	< 0.001
Fluoranthene	0.001	mg/L	< 0.001
Fluorene	0.001	mg/L	< 0.001
Indeno(1.2.3-cd)pyrene	0.001	mg/L	< 0.001
Naphthalene	0.001	mg/L	< 0.001
Phenanthrene	0.001	mg/L	< 0.001
Pyrene	0.001	mg/L	< 0.001
Total PAH*	0.001	mg/L	< 0.001
2-Fluorobiphenyl (surr.)	1	%	132
p-Terphenyl-d14 (surr.)	1	%	133
Heavy Metals			
Arsenic	0.01	mg/L	< 0.01
Cadmium	0.005	mg/L	< 0.005
Chromium	0.01	mg/L	< 0.01
Copper	0.01	mg/L	< 0.01
Lead	0.01	mg/L	< 0.01
Mercury	0.001	mg/L	< 0.001
Nickel	0.01	mg/L	< 0.01
Zinc	0.01	mg/L	< 0.01
USA Leaching Procedure			
Leachate Fluid ^{C01}		comment	1.0
pH (initial)	0.1	pH Units	5.3
pH (Leachate fluid)	0.1	pH Units	5.0
pH (off)	0.1	pH Units	5.1
pH (USA HCI addition)	0.1	pH Units	2.0

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Polycyclic Aromatic Hydrocarbons	Melbourne	Aug 22, 2017	7 Day
- Method: LTM-ORG-2140 PAH and Phenols in Soils by GCMS			
Metals M8	Melbourne	Aug 21, 2017	28 Days

- Method: LTM-MET-3030 by ICP-OES (hydride ICP-OES for Mercury)

Report Number: 559175-L

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

Perth
2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
NATA # 1261
Site # 23736

Company Name: JBS & G Australia (NSW) P/L

Address: Level 1, 50 Margaret St

Sydney NSW 2000

Project Name: 3 SCHOOLS Project ID: 53033 **Order No.:** Received: Aug 17, 2017 1:39 PM

 Report #:
 559175
 Due:
 Aug 24, 2017

 Phone:
 02 8245 0300
 Priority:
 5 Day

Fax: Contact Name: Scott Burrows

																			9-	,	,	••••
		Sa	mple Detail			% Clay	Asbestos - WA guidelines	HOLD	pH (1:5 Aqueous extract)	Total Organic Carbon	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Polychlorinated Biphenyls	USA Leaching Procedure	Metals M8	втех	втех	Moisture Set	Cation Exchange Capacity	Total Recoverable Hydrocarbons	BTEXN and Volatile TRH	BTEXN and Volatile TRH
Mell	ourne Laborato	ory - NATA Site				Х	Х	Х	Х	Х	Х	Х	Х	Х		Х	Х	Х	Х	Х		
Syd	ney Laboratory	- NATA Site # 1	8217				Х										Х			Х	Х	Х
	bane Laboratory					Х																
	h Laboratory - N																					
Exte	rnal Laboratory	,																				
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID																	
1	BH10_0.0-0.1	Aug 17, 2017		Soil	M17-Au22053	Х	Х		Х	Х	Х	Х	Х		Х	Х		Х	Х	Х		
2	BH11_0.1-0.2	Aug 17, 2017		Soil	M17-Au22054	Х	Х		Х	Х	Х	Х	Х		Х	Х		Х	Х	Х		
3	BH12_0.4-0.5	Aug 17, 2017		Soil	M17-Au22055	Х	Х		Х	Х	Х	Х	Х		Х	Х		Х	Х	Х		
4	BH13_0.1-0.2	Aug 17, 2017		Soil	M17-Au22056	Х	Х		Х	Х	Х	Х	Х		Х	Х		Х	Х	Х		
5	BH14_0.1-0.2	Aug 17, 2017		Soil	M17-Au22057	Х	Х		Х	Х	Х	Х	Х		Х	Х		Х	Х	Х		
6	QA20170817	Aug 17, 2017		Soil	M17-Au22058						Х	Х			Х	Х		Х		Х	<u> </u>	
7	RB20170817	Aug 17, 2017		Water	M17-Au22059						Х	Х			Х		Х			Х	<u> </u>	
8	TB20170817	Aug 17, 2017		Water	M17-Au22060															<u> </u>		Х
9	TS20170817	Aug 17, 2017		Water	M17-Au22061																Х	

Eurofins | mgt 2-5 Kingston Town Close, Oakleigh, Victoria, Australia, 3166 ABN: 50 005 085 521 Telephone: +61 3 8564 5000 Page 4 of 10

Date Reported:Aug 24, 2017

Report Number: 559175-L

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane I/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

Perth
2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
NATA # 1261 Site # 23736

Company Name: JBS & G Australia (NSW) P/L

Address: Level 1, 50 Margaret St

> Sydney NSW 2000

Project Name: 3 SCHOOLS Project ID: 53033

Date Reported:Aug 24, 2017

Order No.: Received: Aug 17, 2017 1:39 PM

Report #: 559175 Due: Aug 24, 2017 Phone: 02 8245 0300 Priority: 5 Day

Fax: **Contact Name:** Scott Burrows

Sample Detail	% Clay	Asbestos - WA guidelines	HOLD	pH (1:5 Aqueous extract)	Total Organic Carbon	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Polychlorinated Biphenyls	USA Leaching Procedure	Metals M8	втех	втех	Moisture Set	Cation Exchange Capacity	Total Recoverable Hydrocarbons	BTEXN and Volatile TRH	BTEXN and Volatile TRH	

Mell	Melbourne Laboratory - NATA Site # 1254 & 14271							Х	Х	Х	Х	Х	Х	Х	Х	Х		Х	Х	Х	Х	Х
Syd	Sydney Laboratory - NATA Site # 18217						Х										Х			Х	Х	Х
Bris	Brisbane Laboratory - NATA Site # 20794					Х																
Pert	Perth Laboratory - NATA Site # 23736																					
10	BH11_0.4-0.5	Aug 17, 2017	Sc	oil	M17-Au22062			Х														
11	BH11_0.8-0.9	Aug 17, 2017	Sc	oil	M17-Au22063			Х														
12	BH12_0.1-0.2	Aug 17, 2017	Sc	oil	M17-Au22064			Х														
13	BH12_0.9-1.0	Aug 17, 2017	Sc	oil	M17-Au22065			Х														
14	BH12_1.4-1.5	Aug 17, 2017	Sc	oil	M17-Au22066			Х														
15	BH12_1.9-2.0	Aug 17, 2017	Sc	oil	M17-Au22067			Х														
16	BH13_0.4-0.5	Aug 17, 2017	Sc	oil	M17-Au22068			Х														
17	BH13_0.9-1.0	Aug 17, 2017	Sc	oil	M17-Au22069			Х														
18	QC20170817	Aug 17, 2017	Sc	oil	M17-Au22070			Х														
19	BH12_2.3-2.4	Aug 17, 2017	Sc	oil	M17-Au22071			Х														
20	BH10_0.0-0.1	Aug 17, 2017	US	S Leachate	M17-Au23735						Х			Χ	Χ							
21	BH11_0.0-0.2	Aug 17, 2017	US	S Leachate	M17-Au23736						Х			Х	Х							

Eurofins | mgt 2-5 Kingston Town Close, Oakleigh, Victoria, Australia, 3166

Page 5 of 10 ABN: 50 005 085 521 Telephone: +61 3 8564 5000 Report Number: 559175-L

Order No.:

Report #:

Phone:

Fax:

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

559175

02 8245 0300

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Received:

Priority:

Contact Name:

Due:

Perth
2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
NATA # 1261
Site # 23736

Aug 17, 2017 1:39 PM

Aug 24, 2017

Scott Burrows

5 Day

Company Name: JBS & G Australia (NSW) P/L

Address: Level 1, 50 Margaret St

Sydney NSW 2000

Project Name: 3 SCHOOLS

Project ID: 53033

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

Sample Detail				% Clay	Asbestos - WA guidelines	HOLD	pH (1:5 Aqueous extract)	Total Organic Carbon	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Polychlorinated Biphenyls	USA Leaching Procedure	Metals M8	втех	втех	Moisture Set	Cation Exchange Capacity	Total Recoverable Hydrocarbons	BTEXN and Volatile TRH	BTEXN and Volatile TRH		
Mel	bourne Laboratory - N	NATA Site #	# 1254 & 142	71				Х	Χ	Χ	Χ	Х	Х	Χ	Χ	Х		Х	Х	Х	Χ	Х
Syd	ney Laboratory - NAT	TA Site # 18	3217				Х										Х			Х	Х	Х
Bris	bane Laboratory - NA	ATA Site # 2	20794			Χ																
Per	Perth Laboratory - NATA Site # 23736																					
22	BH12_0.4-0.5 Aug	17, 2017		US Leachate	M17-Au23737						Χ			Χ	Χ							
23	BH13_0.1-0.2 Aug	17, 2017		US Leachate	M17-Au23738						Χ			Х	Х							
24	BH14_0.1-0.2 Aug	17, 2017		US Leachate	M17-Au23739						Χ			Χ	Χ							
Tes	Test Counts				5	5	10	5	5	12	7	5	5	12	7	7	6	5	7	2	2	

Eurofins | mgt 2-5 Kingston Town Close, Oakleigh, Victoria, Australia, 3166 ABN: 50 005 085 521 Telephone: +61 3 8564 5000

Page 6 of 10

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. All biota results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis
- 8. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

 mg/kg: milligrams per kilogram
 mg/L: milligrams per litre

 ug/L: micrograms per litre
 ppm: Parts per million

 ppb: Parts per billion
 %: Percentage

org/100mL: Organisms per 100 millilitres

NTU: Nephelometric Turbidity Units

MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting.

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody

SRA Sample Receipt Advice

QSM Quality Systems Manual ver 5.1 US Department of Defense
CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within

TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR: RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150%-Phenols & PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.1 where no positive PFAS results have been reported have been reviewed and no data was affected.

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Eurofins | mgt 2-5 Kingston Town Close, Oakleigh, Victoria, Australia, 3166

ABN: 50 005 085 521 Telephone: +61 3 8564 5000

Report Number: 559175-L

Quality Control Results

Test			Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Method Blank									
Heavy Metals									
Arsenic			mg/L	< 0.01			0.01	Pass	
Cadmium			mg/L	< 0.005			0.005	Pass	
Chromium			mg/L	< 0.01			0.01	Pass	
Copper			mg/L	< 0.01			0.01	Pass	
Lead			mg/L	< 0.01			0.01	Pass	
Mercury			mg/L	< 0.001			0.001	Pass	
Nickel			mg/L	< 0.01			0.01	Pass	
Zinc			mg/L	< 0.01			0.01	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery				1	ı		T		
Polycyclic Aromatic Hydrocarbons	3	, ,		Result 1					
Acenaphthene	M17-Au23735	CP	%	109			70-130	Pass	
Acenaphthylene	M17-Au23735	CP	%	119			70-130	Pass	
Anthracene	M17-Au23735	CP	%	115			70-130	Pass	
Benz(a)anthracene	M17-Au23735	CP	%	120			70-130	Pass	
Benzo(a)pyrene	M17-Au23735	CP	%	129			70-130	Pass	
Benzo(b&j)fluoranthene	M17-Au23735	CP	%	115			70-130	Pass	
Benzo(g.h.i)perylene	M17-Au23735	CP	%	121			70-130	Pass	
Benzo(k)fluoranthene	M17-Au23735	CP	%	112			70-130	Pass	
Chrysene	M17-Au23735	CP	%	129			70-130	Pass	
Dibenz(a.h)anthracene	M17-Au23735	CP	%	127			70-130	Pass	
Fluoranthene	M17-Au23735	CP	%	128			70-130	Pass	
Fluorene	M17-Au23735	CP	%	114			70-130	Pass	
Indeno(1.2.3-cd)pyrene	M17-Au23735	CP	%	126			70-130	Pass	
Naphthalene	M17-Au23735	CP	%	112			70-130	Pass	
Phenanthrene	M17-Au23735	CP	%	104			70-130	Pass	
Pyrene	M17-Au23735	CP	%	128			70-130	Pass	
Spike - % Recovery									
Heavy Metals				Result 1					
Lead	M17-Au24214	NCP	%	101			75-125	Pass	
Spike - % Recovery									
Heavy Metals				Result 1					
Arsenic	M17-Au23737	CP	%	104			75-125	Pass	
Cadmium	M17-Au23737	CP	%	102			75-125	Pass	
Chromium	M17-Au23737	CP	%	103			75-125	Pass	
Copper	M17-Au23737	CP	%	101			75-125	Pass	
Mercury	M17-Au23737	CP	%	101			70-130	Pass	
Nickel	M17-Au23737	СР	%	101			75-125	Pass	
Zinc	M17-Au23737	СР	%	106			75-125	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Polycyclic Aromatic Hydrocarbons	3	, ,		Result 1	Result 2	RPD			
Acenaphthene	M17-Au22291	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Acenaphthylene	M17-Au22291	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Anthracene	M17-Au22291	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benz(a)anthracene	M17-Au22291	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(a)pyrene	M17-Au22291	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(b&j)fluoranthene	M17-Au22291	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(g.h.i)perylene	M17-Au22291	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Polycyclic Aromatic Hydroca	rbons			Result 1	Result 2	RPD			
Benzo(k)fluoranthene	M17-Au22291	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Chrysene	M17-Au22291	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Dibenz(a.h)anthracene	M17-Au22291	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Fluoranthene	M17-Au22291	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Fluorene	M17-Au22291	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	M17-Au22291	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Naphthalene	M17-Au22291	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Phenanthrene	M17-Au22291	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Pyrene	M17-Au22291	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	M17-Au23737	СР	mg/L	< 0.01	< 0.01	<1	30%	Pass	
Cadmium	M17-Au23737	СР	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Chromium	M17-Au23737	СР	mg/L	< 0.01	< 0.01	<1	30%	Pass	
Copper	M17-Au23737	СР	mg/L	< 0.01	< 0.01	<1	30%	Pass	
Lead	M17-Au23737	СР	mg/L	5.8	5.8	1.0	30%	Pass	
Mercury	M17-Au23737	СР	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Nickel	M17-Au23737	СР	mg/L	< 0.01	< 0.01	<1	30%	Pass	
Zinc	M17-Au23737	СР	mg/L	0.09	0.09	1.0	30%	Pass	

Comments

Sample Integrity

Custody Seals Intact (if used) N/A Attempt to Chill was evident Yes Sample correctly preserved Yes Appropriate sample containers have been used Yes Sample containers for volatile analysis received with minimal headspace Yes Samples received within HoldingTime Yes Some samples have been subcontracted No

Qualifier Codes/Comments

Code Description

Leachate Fluid Key: 1 - pH 5.0; 2 - pH 2.9; 3 - pH 9.2; 4 - Reagent (DI) water; 5 - Client sample, 6 - other C01

Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs N07

Authorised By

Nibha Vaidva Analytical Services Manager Alex Petridis Senior Analyst-Metal (VIC) Alex Petridis Senior Analyst-Organic (VIC) Joseph Edouard Senior Analyst-Organic (VIC)

Glenn Jackson

National Operations Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins | mgt shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | mgt be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Report Number: 559175-L

JBS & G Australia (NSW) P/L Level 1, 50 Margaret St Sydney NSW 2000

Attention: **Scott Burrows**

559175-S Report Project name 3 SCHOOLS Project ID 53033 Received Date Aug 17, 2017

Certificate of Analysis

NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Client Sample ID			BH10_0.0-0.1	BH11_0.1-0.2	BH12_0.4-0.5	BH13_0.1-0.2
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			M17-Au22053	M17-Au22054	M17-Au22055	M17-Au22056
Date Sampled			Aug 17, 2017	Aug 17, 2017	Aug 17, 2017	Aug 17, 2017
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM Fract	ions	•				
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	< 50	< 50	< 50	79
TRH C29-C36	50	mg/kg	< 50	< 50	< 50	< 50
TRH C10-36 (Total)	50	mg/kg	< 50	< 50	< 50	79
BTEX		-				
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	71	72	63	79
Total Recoverable Hydrocarbons - 2013 NEPM Fract	ions					
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100	< 100
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5	3.9
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	0.6	3.9
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	1.2	3.9
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	0.6
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	2.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	2.6
Benzo(b&j)fluorantheneN07	0.5	mg/kg	< 0.5	< 0.5	< 0.5	2.1
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	1.7
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	2.2
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	2.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	0.5

01 0						
Client Sample ID			BH10_0.0-0.1	BH11_0.1-0.2	BH12_0.4-0.5	BH13_0.1-0.2
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			M17-Au22053	M17-Au22054	M17-Au22055	M17-Au22056
Date Sampled			Aug 17, 2017	Aug 17, 2017	Aug 17, 2017	Aug 17, 2017
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons		·				
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	8.1
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	1.2
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	2.7
Pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	6.8
Total PAH*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	33.5
2-Fluorobiphenyl (surr.)	1	%	98	80	94	113
p-Terphenyl-d14 (surr.)	1	%	146	130	137	149
Organochlorine Pesticides						
Chlordanes - Total	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
4.4'-DDD	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDE	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDT	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
a-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Aldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
b-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
d-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Dieldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan I	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan II	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan sulphate	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin aldehyde	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin ketone	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
g-BHC (Lindane)	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor epoxide	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Hexachlorobenzene	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Methoxychlor	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Toxaphene	1	mg/kg	< 1	< 1	< 1	< 1
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Vic EPA IWRG 621 Organochlorine pesticides (Total)*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Vic EPA IWRG 621 Other organochlorine pesticides (Total)*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Dibutylchlorendate (surr.)	1	%	79	84	84	89
Tetrachloro-m-xylene (surr.)	1	%	118	67	67	72
Polychlorinated Biphenyls	'	70	110	0,	07	,,,
Aroclor-1016	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Aroclor-1221	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Aroclor-1232	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Aroclor-1242	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Aroclor-1248	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Aroclor-1254	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Aroclor-1254 Aroclor-1260	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Total PCB*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Dibutylchlorendate (surr.)	1	%	79	84	84	89
Tetrachloro-m-xylene (surr.)	1	%	118	67	67	72

Client Sample ID Sample Matrix			BH10_0.0-0.1 Soil	BH11_0.1-0.2 Soil	BH12_0.4-0.5 Soil	BH13_0.1-0.2 Soil
Eurofins mgt Sample No.			M17-Au22053	M17-Au22054	M17-Au22055	M17-Au22056
Date Sampled			Aug 17, 2017	Aug 17, 2017	Aug 17, 2017	Aug 17, 2017
Test/Reference	LOR	Unit				
% Clay	1	%	12	15	16	16
Conductivity (1:5 aqueous extract at 25°C)	10	uS/cm	61	59	16	86
pH (1:5 Aqueous extract)	0.1	pH Units	5.9	6.8	5.9	6.6
Total Organic Carbon	0.1	%	2.6	0.4	0.6	1.4
% Moisture	1	%	16	13	13	13
Heavy Metals						
Arsenic	2	mg/kg	3.0	3.7	3.5	7.2
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	9.5	18	14	34
Copper	5	mg/kg	9.5	10	9.7	24
Lead	5	mg/kg	45	23	440	36
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	< 5	10	7.4	23
Zinc	5	mg/kg	60	36	42	76
Cation Exchange Capacity						
Cation Exchange Capacity	0.05	meq/100g	9.3	20	7.8	16

Client Sample ID Sample Matrix			BH14_0.1-0.2 Soil	QA20170817 Soil
Eurofins mgt Sample No.			M17-Au22057	M17-Au22058
Date Sampled			Aug 17, 2017	Aug 17, 2017
Test/Reference	LOR	Unit		
Total Recoverable Hydrocarbons - 1999 NEPM	Fractions			
TRH C6-C9	20	mg/kg	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20
TRH C15-C28	50	mg/kg	< 50	< 50
TRH C29-C36	50	mg/kg	< 50	< 50
TRH C10-36 (Total)	50	mg/kg	< 50	< 50
BTEX				
Benzene	0.1	mg/kg	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1
Xylenes - Total	0.3	mg/kg	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	101	97
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions			
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	< 20
TRH C6-C10	20	mg/kg	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	< 50
TRH >C10-C16 less Naphthalene (F2)N01	50	mg/kg	< 50	< 50
TRH >C16-C34	100	mg/kg	< 100	< 100
TRH >C34-C40	100	mg/kg	< 100	< 100

Client Sample ID			BH14_0.1-0.2	QA20170817
Sample Matrix			Soil	Soil
Eurofins mgt Sample No.			M17-Au22057	M17-Au22058
Date Sampled			Aug 17, 2017	Aug 17, 2017
Test/Reference	LOR	Unit	,	, g ,
Polycyclic Aromatic Hydrocarbons	LOIX	Offic		
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5
Benzo(b&j)fluorantheneN07	0.5	mg/kg	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5
Pyrene	0.5	mg/kg	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	< 0.5	< 0.5 95
2-Fluorobiphenyl (surr.) p-Terphenyl-d14 (surr.)	1	%	101 144	144
Organochlorine Pesticides	ı ı	/0	144	144
Chlordanes - Total	0.1	mg/kg	< 0.1	< 0.1
4.4'-DDD	0.05	mg/kg	< 0.05	< 0.05
4.4'-DDE	0.05	mg/kg	< 0.05	< 0.05
4.4'-DDT	0.05	mg/kg	< 0.05	< 0.05
a-BHC	0.05	mg/kg	< 0.05	< 0.05
Aldrin	0.05	mg/kg	< 0.05	< 0.05
b-BHC	0.05	mg/kg	< 0.05	< 0.05
d-BHC	0.05	mg/kg	< 0.05	< 0.05
Dieldrin	0.05	mg/kg	< 0.05	< 0.05
Endosulfan I	0.05	mg/kg	< 0.05	< 0.05
Endosulfan II	0.05	mg/kg	< 0.05	< 0.05
Endosulfan sulphate	0.05	mg/kg	< 0.05	< 0.05
Endrin	0.05	mg/kg	< 0.05	< 0.05
Endrin aldehyde	0.05	mg/kg	< 0.05	< 0.05
Endrin ketone	0.05	mg/kg	< 0.05	< 0.05
g-BHC (Lindane)	0.05	mg/kg	< 0.05	< 0.05
Heptachlor	0.05	mg/kg	< 0.05	< 0.05
Heptachlor epoxide	0.05	mg/kg	< 0.05	< 0.05
Hexachlorobenzene Methographics	0.05	mg/kg	< 0.05	< 0.05
Methoxychlor	0.05	mg/kg	< 0.05	< 0.05
Toxaphene Aldrin and Dialdrin (Total)*	0.05	mg/kg	< 1	< 1
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.05	< 0.05
DDT + DDE + DDD (Total)* Vic EPA IWRG 621 Organochlorine pesticides (Total)*	0.05 0.1	mg/kg	< 0.05 < 0.1	< 0.05 < 0.1
Vic EPA IWRG 621 Other organochlorine pesticides		mg/kg		
(Total)*	0.1	mg/kg	< 0.1	< 0.1
Dibutylchlorendate (surr.)	1	%	93 71	87

Client Sample ID			BH14_0.1-0.2	QA20170817
Sample Matrix			Soil	Soil
Eurofins mgt Sample No.			M17-Au22057	M17-Au22058
Date Sampled			Aug 17, 2017	Aug 17, 2017
Test/Reference	LOR	Unit		
Polychlorinated Biphenyls				
Aroclor-1016	0.1	mg/kg	< 0.1	-
Aroclor-1221	0.1	mg/kg	< 0.1	-
Aroclor-1232	0.1	mg/kg	< 0.1	-
Aroclor-1242	0.1	mg/kg	< 0.1	-
Aroclor-1248	0.1	mg/kg	< 0.1	-
Aroclor-1254	0.1	mg/kg	< 0.1	-
Aroclor-1260	0.1	mg/kg	< 0.1	-
Total PCB*	0.1	mg/kg	< 0.1	-
Dibutylchlorendate (surr.)	1	%	93	-
Tetrachloro-m-xylene (surr.)	1	%	71	-
% Clay	1	%	8.8	-
Conductivity (1:5 aqueous extract at 25°C)	10	uS/cm	48	-
pH (1:5 Aqueous extract)	0.1	pH Units	5.3	-
Total Organic Carbon	0.1	%	< 0.1	-
% Moisture	1	%	12	13
Heavy Metals				
Arsenic	2	mg/kg	2.8	3.4
Cadmium	0.4	mg/kg	< 0.4	< 0.4
Chromium	5	mg/kg	7.5	33
Copper	5	mg/kg	5.2	13
Lead	5	mg/kg	7.5	17
Mercury	0.1	mg/kg	< 0.1	< 0.1
Nickel	5	mg/kg	< 5	23
Zinc	5	mg/kg	< 5	39
Cation Exchange Capacity				
Cation Exchange Capacity	0.05	meq/100g	2.8	-

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Melbourne	Aug 21, 2017	14 Day
- Method: LTM-ORG-2010 TRH C6-C36			
BTEX	Melbourne	Aug 21, 2017	14 Day
- Method: TRH C6-C40 - LTM-ORG-2010			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Melbourne	Aug 21, 2017	14 Day
- Method: TRH C6-C40 - LTM-ORG-2010			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Melbourne	Aug 21, 2017	14 Day
- Method: TRH C6-C40 - LTM-ORG-2010			
Polycyclic Aromatic Hydrocarbons	Melbourne	Aug 21, 2017	14 Day
- Method: LTM-ORG-2140 PAH and Phenols in Soils by GCMS			
Organochlorine Pesticides	Melbourne	Aug 21, 2017	14 Day
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water			
Polychlorinated Biphenyls	Melbourne	Aug 21, 2017	28 Days
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water			
% Clay	Brisbane	Aug 22, 2017	6 Day
- Method: LTM-GEN-7040			
pH (1:5 Aqueous extract)	Melbourne	Aug 21, 2017	7 Day
- Method: LTM-GEN-7090 pH in soil by ISE			
Total Organic Carbon	Melbourne	Aug 23, 2017	28 Day
- Method: APHA 5310B Total Organic Carbon			
Metals M8	Melbourne	Aug 21, 2017	28 Days
- Method: LTM-MET-3030 by ICP-OES (hydride ICP-OES for Mercury)			
Conductivity (1:5 aqueous extract at 25°C)	Melbourne	Aug 21, 2017	7 Day
- Method: LTM-INO-4030			
Cation Exchange Capacity	Melbourne	Aug 23, 2017	180 Days
- Method: LTM-MET-3060 - Cation Exchange Capacity (CEC) & Exchangeable Sodium Percentage (ESP)			
% Moisture	Melbourne	Aug 18, 2017	14 Day

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

Perth
2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
NATA # 1261
Site # 23736

Company Name: JBS & G Australia (NSW) P/L

Address: Level 1, 50 Margaret St

Sydney NSW 2000

Project Name: 3 SCHOOLS Project ID: 53033 **Order No.:** Received: Aug 17, 2017 1:39 PM

 Report #:
 559175
 Due:
 Aug 24, 2017

 Phone:
 02 8245 0300
 Priority:
 5 Day

Fax: Contact Name: Scott Burrows

		Sai	mple Detail			% Clay	Asbestos - WA guidelines	HOLD	pH (1:5 Aqueous extract)	Total Organic Carbon	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Polychlorinated Biphenyls	USA Leaching Procedure	Metals M8	втех	втех	Moisture Set	Cation Exchange Capacity	Total Recoverable Hydrocarbons	BTEXN and Volatile TRH	BTEXN and Volatile TRH
Mell	ourne Laborato	ory - NATA Site	# 1254 & 142	71				Х	Х	Х	Х	Х	Х	Х	Х	Х		Χ	Χ	Χ	Χ	Х
Syd	ney Laboratory	- NATA Site # 1	8217				Χ										Χ			Χ	Χ	Х
Bris	bane Laboratory	y - NATA Site #	20794			Χ																
Pert	h Laboratory - N	IATA Site # 237	36																			
Exte	rnal Laboratory	,																				
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID																	
1	BH10_0.0-0.1	Aug 17, 2017		Soil	M17-Au22053	Х	Х		Х	Х	Х	Х	Х		Х	Х		Х	Х	Х		
2	BH11_0.1-0.2	Aug 17, 2017		Soil	M17-Au22054	Х	Х		Х	Х	Х	Х	Х		Х	Х		Х	Х	Х		
3	BH12_0.4-0.5	Aug 17, 2017		Soil	M17-Au22055	Х	Х		Х	Х	Х	Х	Х		Х	Х		Х	Х	Х		
4	BH13_0.1-0.2	Aug 17, 2017		Soil	M17-Au22056	Χ	Х		Х	Х	Х	Х	Х		Х	Х		Х	Х	Х		
5	BH14_0.1-0.2	Aug 17, 2017		Soil	M17-Au22057	Х	Х		Х	Х	Х	Х	Х		Х	Х		Х	Х	Х		
6	QA20170817	Aug 17, 2017		Soil	M17-Au22058						Х	Х			Х	Х		Х		Х		
7	RB20170817	Aug 17, 2017		Water	M17-Au22059						Х	Х			Х		Х			Х		
8	TB20170817	Aug 17, 2017		Water	M17-Au22060																	Х
9	TS20170817	Aug 17, 2017		Water	M17-Au22061																Χ	

Eurofins | mgt 2-5 Kingston Town Close, Oakleigh, Victoria, Australia, 3166 ABN: 50 005 085 521 Telephone: +61 3 8564 5000 Page 7 of 17
Report Number: 559175-S

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney
Unit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 9900 8400
NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794 Perth
2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
NATA # 1261
Site # 23736

Company Name: JBS & G Australia (NSW) P/L

Address: Level 1, 50 Margaret St

Sydney NSW 2000

Project Name: 3 SCHOOLS Project ID: 53033 **Order No.:** Received: Aug 17, 2017 1:39 PM

 Report #:
 559175
 Due:
 Aug 24, 2017

 Phone:
 02 8245 0300
 Priority:
 5 Day

Fax: Contact Name: Scott Burrows

Euro	ofins	mgt	Analy	tical/	Servic	es N	lanager	: Nibha	Vaidya

		Sample Deta	ail		% Clay	Asbestos - WA guidelines	HOLD	pH (1:5 Aqueous extract)	Total Organic Carbon	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Polychlorinated Biphenyls	USA Leaching Procedure	Metals M8	втех	втех	Moisture Set	Cation Exchange Capacity	Total Recoverable Hydrocarbons	BTEXN and Volatile TRH	BTEXN and Volatile TRH
Mell	ourne Laborato	ory - NATA Site # 1254 &	14271				Х	Х	Х	Х	Х	Х	Х	Х	Х		Х	Х	Х	Х	Х
Syd	ney Laboratory	- NATA Site # 18217				Х										Χ			Х	Χ	Χ
Bris	bane Laboratory	y - NATA Site # 20794			Χ																
Pert	h Laboratory - N	NATA Site # 23736																			
10	BH11_0.4-0.5	Aug 17, 2017	Soil	M17-Au22062			Х														
11	BH11_0.8-0.9	Aug 17, 2017	Soil	M17-Au22063			Х														
12	BH12_0.1-0.2	Aug 17, 2017	Soil	M17-Au22064			Х														
13	BH12_0.9-1.0	Aug 17, 2017	Soil	M17-Au22065			Х														
14	BH12_1.4-1.5	Aug 17, 2017	Soil	M17-Au22066			Х														
15	BH12_1.9-2.0	Aug 17, 2017	Soil	M17-Au22067			Х														\square
16	BH13_0.4-0.5	Aug 17, 2017	Soil	M17-Au22068			Х														
17	BH13_0.9-1.0	Aug 17, 2017	Soil	M17-Au22069			Х														
18	QC20170817	Aug 17, 2017	Soil	M17-Au22070			Х														
19	BH12_2.3-2.4	Aug 17, 2017	Soil	M17-Au22071			Х														
20	BH10_0.0-0.1	Aug 17, 2017	US Leachate	M17-Au23735						Х			Х	Χ							
21	BH11_0.0-0.2	Aug 17, 2017	US Leachate	M17-Au23736						Х			Χ	Χ							

Eurofins | mgt 2-5 Kingston Town Close, Oakleigh, Victoria, Australia, 3166 ABN: 50 005 085 521 Telephone: +61 3 8564 5000

Report Number: 559175-S

Page 8 of 17

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane I/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

Perth
2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
NATA # 1261 Site # 23736

Company Name: JBS & G Australia (NSW) P/L

Address: Level 1, 50 Margaret St

> Sydney NSW 2000

Project Name: 3 SCHOOLS

Project ID: 53033 Order No.: Received: Aug 17, 2017 1:39 PM

Report #: 559175 Due: Aug 24, 2017 Phone: 02 8245 0300 Priority: 5 Day

Fax: **Contact Name:** Scott Burrows

		Sa	mple Detail			% Clay	Asbestos - WA guidelines	HOLD	pH (1:5 Aqueous extract)	Total Organic Carbon	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Polychlorinated Biphenyls	USA Leaching Procedure	Metals M8	втех	втех	Moisture Set	Cation Exchange Capacity	Total Recoverable Hydrocarbons	BTEXN and Volatile TRH	BTEXN and Volatile TRH
Mell	ourne Laborato	ry - NATA Site	# 1254 & 142	71				Х	Χ	Χ	Χ	Х	Х	Χ	Χ	Χ		Χ	Χ	Χ	Χ	Х
Syd	ney Laboratory	- NATA Site # 1	8217				Х										Х			Χ	Χ	Х
Bris	bane Laboratory	y - NATA Site #	20794			Χ																
Pert	h Laboratory - N	ATA Site # 237	36																			
22	BH12_0.4-0.5	Aug 17, 2017		US Leachate	M17-Au23737						Х			Х	Χ							
23	BH13_0.1-0.2	Aug 17, 2017		US Leachate	M17-Au23738						Х			Х	Х							
24	BH14_0.1-0.2			US Leachate	M17-Au23739						Х			Х	Х							
Test	Counts					5	5	10	5	5	12	7	5	5	12	7	7	6	5	7	2	2

Eurofins | mgt 2-5 Kingston Town Close, Oakleigh, Victoria, Australia, 3166 ABN: 50 005 085 521 Telephone: +61 3 8564 5000

Page 9 of 17

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. All biota results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis
- 8. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

 mg/kg: milligrams per kilogram
 mg/L: milligrams per litre

 ug/L: micrograms per litre
 ppm: Parts per million

 ppb: Parts per billion
 %: Percentage

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units

MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody

SRA Sample Receipt Advice

QSM Quality Systems Manual ver 5.1 US Department of Defense
CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within

TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR: RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150%-Phenols & PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.1 where no positive PFAS results have been reported have been reviewed and no data was affected.

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Eurofins | mgt 2-5 Kingston Town Close, Oakleigh, Victoria, Australia, 3166 ABN: 50 005 085 521 Telephone: +61 3 8564 5000

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank	<u> </u>	•	'		
Total Recoverable Hydrocarbons - 1999 NEPM Fractions					
TRH C6-C9	mg/kg	< 20	20	Pass	
TRH C10-C14	mg/kg	< 20	20	Pass	
TRH C15-C28	mg/kg	< 50	50	Pass	
TRH C29-C36	mg/kg	< 50	50	Pass	
Method Blank					
BTEX					
Benzene	mg/kg	< 0.1	0.1	Pass	
Toluene	mg/kg	< 0.1	0.1	Pass	
Ethylbenzene	mg/kg	< 0.1	0.1	Pass	
m&p-Xylenes	mg/kg	< 0.2	0.2	Pass	
o-Xylene	mg/kg	< 0.1	0.1	Pass	
Xvlenes - Total	mg/kg	< 0.3	0.3	Pass	
Method Blank	1				
Total Recoverable Hydrocarbons - 2013 NEPM Fractions					
Naphthalene	mg/kg	< 0.5	0.5	Pass	
TRH C6-C10	mg/kg	< 20	20	Pass	
TRH >C10-C16	mg/kg	< 50	50	Pass	
TRH >C16-C34	mg/kg	< 100	100	Pass	
TRH >C34-C40	mg/kg	< 100	100	Pass	
Method Blank	IIIg/Rg	100	100	1 455	
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	mg/kg	< 0.5	0.5	Pass	
Acenaphthylene	mg/kg	< 0.5	0.5	Pass	
Anthracene	mg/kg	< 0.5	0.5	Pass	
Benz(a)anthracene	mg/kg	< 0.5	0.5	Pass	
Benzo(a)pyrene	mg/kg	< 0.5	0.5	Pass	
Benzo(b&i)fluoranthene	mg/kg	< 0.5	0.5	Pass	
Benzo(g.h.i)perylene	mg/kg	< 0.5	0.5	Pass	
Benzo(k)fluoranthene		< 0.5	0.5	Pass	
Chrysene	mg/kg	< 0.5	0.5	Pass	
Dibenz(a.h)anthracene	mg/kg	< 0.5	0.5	Pass	
	mg/kg	< 0.5	0.5	Pass	
Fluorene Fluorene	mg/kg	1			
Indeno(1.2.3-cd)pyrene	mg/kg	< 0.5	0.5 0.5	Pass Pass	
\	mg/kg	< 0.5			
Naphthalene	mg/kg	< 0.5	0.5	Pass	
Phenanthrene	mg/kg	< 0.5	0.5	Pass	
Pyrene Math ad Blank	mg/kg	< 0.5	0.5	Pass	
Method Blank					
Organochlorine Pesticides		.04	0.4	Dana	
Chlordanes - Total 4.4'-DDD	mg/kg	< 0.1	0.1	Pass	
	mg/kg	< 0.05	0.05	Pass	
4.4'-DDE	mg/kg	< 0.05	0.05	Pass	
4.4'-DDT	mg/kg	< 0.05	0.05	Pass	
a-BHC	mg/kg	< 0.05	0.05	Pass	
Aldrin	mg/kg	< 0.05	0.05	Pass	
b-BHC	mg/kg	< 0.05	0.05	Pass	
d-BHC	mg/kg	< 0.05	0.05	Pass	
Dieldrin	mg/kg	< 0.05	0.05	Pass	
Endosulfan I	mg/kg	< 0.05	0.05	Pass	
Endosulfan II	mg/kg	< 0.05	0.05	Pass	

Test	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Endosulfan sulphate	mg/kg	< 0.05		0.05	Pass	
Endrin	mg/kg	< 0.05		0.05	Pass	
Endrin aldehyde	mg/kg	< 0.05		0.05	Pass	
Endrin ketone	mg/kg	< 0.05		0.05	Pass	
g-BHC (Lindane)	mg/kg	< 0.05		0.05	Pass	
Heptachlor	mg/kg	< 0.05		0.05	Pass	
Heptachlor epoxide	mg/kg	< 0.05		0.05	Pass	
Hexachlorobenzene	mg/kg	< 0.05		0.05	Pass	
Methoxychlor	mg/kg	< 0.05		0.05	Pass	
Toxaphene	mg/kg	< 1		1	Pass	
Method Blank	1		'		1 3.00	
Polychlorinated Biphenyls						
Aroclor-1016	mg/kg	< 0.1		0.1	Pass	
Aroclor-1221	mg/kg	< 0.1		0.1	Pass	
Aroclor-1232	mg/kg	< 0.1		0.1	Pass	
Aroclor-1242	mg/kg	< 0.1		0.1	Pass	
Aroclor-1248		< 0.1		0.1	Pass	
	mg/kg					
Arcelor 1269	mg/kg	< 0.1		0.1	Pass	
Aroclor-1260	mg/kg	< 0.1		0.1	Pass	
Total PCB*	mg/kg	< 0.1		0.1	Pass	
Method Blank	1 0/		T T	T .		
% Clay	%	< 1		1	Pass	
Total Organic Carbon	%	< 0.1		0.1	Pass	
Method Blank				I	Γ	
Heavy Metals						
Arsenic	mg/kg	< 2		2	Pass	
Cadmium	mg/kg	< 0.4		0.4	Pass	
Chromium	mg/kg	< 5		5	Pass	
Copper	mg/kg	< 5		5	Pass	
Lead	mg/kg	< 5		5	Pass	
Mercury	mg/kg	< 0.1		0.1	Pass	
Nickel	mg/kg	< 5		5	Pass	
Zinc	mg/kg	< 5		5	Pass	
Method Blank						
Cation Exchange Capacity						
Cation Exchange Capacity	meq/100g	< 0.05		0.05	Pass	
LCS - % Recovery						
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	_					
TRH C6-C9	%	123		70-130	Pass	
TRH C10-C14	%	87		70-130	Pass	
LCS - % Recovery						
BTEX						
Benzene	%	76		70-130	Pass	
Toluene	%	92		70-130	Pass	
Ethylbenzene	%	88		70-130	Pass	
m&p-Xylenes	%	89		70-130	Pass	
Xylenes - Total	%	88		70-130	Pass	
LCS - % Recovery	, , ,					
Total Recoverable Hydrocarbons - 2013 NEPM Fractions						
Naphthalene	%	81		70-130	Pass	
TRH C6-C10	%	118		70-130		
			+		Pass	
TRH >C10-C16	%	89		70-130	Pass	
LCS - % Recovery						L

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Acenaphthene	%	97	70-130	Pass	
Acenaphthylene	%	107	70-130	Pass	
Anthracene	%	76	70-130	Pass	
Benz(a)anthracene	%	81	70-130	Pass	
Benzo(a)pyrene	%	90	70-130	Pass	
Benzo(b&j)fluoranthene	%	82	70-130	Pass	
Benzo(g.h.i)perylene	%	93	70-130	Pass	
Benzo(k)fluoranthene	%	104	70-130	Pass	
Chrysene	%	86	70-130	Pass	
Dibenz(a.h)anthracene	%	76	70-130	Pass	
Fluoranthene	%	99	70-130	Pass	
Fluorene	%	103	70-130	Pass	
Indeno(1.2.3-cd)pyrene	%	78	70-130	Pass	
Naphthalene	%	97	70-130	Pass	
Phenanthrene	%	71	70-130	Pass	
Pyrene	%	99	70-130	Pass	
LCS - % Recovery	70		70 100	1 400	
Organochlorine Pesticides					
4.4'-DDD	%	101	70-130	Pass	
4.4'-DDE	%	88	70-130	Pass	
4.4'-DDT	%	81	70-130	Pass	
a-BHC	%	92	70-130	Pass	
Aldrin	%	90	70-130	Pass	
b-BHC	%	85	70-130	Pass	
d-BHC	%	91	70-130	Pass	
Dieldrin	%	90	70-130	Pass	
Endosulfan I	%	91	70-130	Pass	
Endosulfan II	%	89	70-130	Pass	
Endosulfan sulphate	%	88	70-130	Pass	
Endosulian sulphate Endrin	%	75	70-130	Pass	
	%	89	70-130	Pass	
Endrin aldehyde Endrin ketone	%	77	70-130		
				Pass	
g-BHC (Lindane)	%	96	70-130	Pass	
Heptachlor	%	73	70-130	Pass	
Heptachlor epoxide	%	90	70-130	Pass	
Hexachlorobenzene	%	90	70-130	Pass	
Methoxychlor	%	72	70-130	Pass	
LCS - % Recovery		T T	T	I	
Polychlorinated Biphenyls		74	70.400		
Aroclor-1260	%	71	70-130	Pass	
LCS - % Recovery		1 1	T	T _	
% Clay	%	86	70-130	Pass	
Total Organic Carbon	%	100	70-130	Pass	
LCS - % Recovery					
Heavy Metals					
Arsenic	%	105	80-120	Pass	
Cadmium	%	106	80-120	Pass	
Chromium	%	113	80-120	Pass	
Copper	%	117	80-120	Pass	
Lead	%	114	80-120	Pass	
Mercury	%	117	75-125	Pass	
Nickel	%	118	80-120	Pass	
Zinc	%	115	80-120	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery								
Total Recoverable Hydrocarbons	s - 1999 NEPM Fract	ions		Result 1				
TRH C6-C9	Z17-Au20086	NCP	%	128		70-130	Pass	
TRH C10-C14	M17-Au21688	NCP	%	94		70-130	Pass	
Spike - % Recovery								
BTEX				Result 1				
Benzene	Z17-Au20086	NCP	%	101		70-130	Pass	
Toluene	Z17-Au20086	NCP	%	84		70-130	Pass	
Ethylbenzene	Z17-Au20086	NCP	%	119		70-130	Pass	
m&p-Xylenes	Z17-Au20086	NCP	%	118		70-130	Pass	
o-Xylene	Z17-Au20086	NCP	%	112		70-130	Pass	
Xylenes - Total	Z17-Au20086	NCP	%	116		70-130	Pass	
Spike - % Recovery				•				
Total Recoverable Hydrocarbons	s - 2013 NEPM Fract	ions		Result 1				
Naphthalene	Z17-Au20086	NCP	%	126		70-130	Pass	
TRH C6-C10	Z17-Au20086	NCP	%	126		70-130	Pass	
TRH >C10-C16	M17-Au21688	NCP	%	99		70-130	Pass	
Spike - % Recovery			,,,	- 55	L .	10.00		
Polycyclic Aromatic Hydrocarbo	ns			Result 1	Π			
Acenaphthene	M17-Au21691	NCP	%	102		70-130	Pass	
Acenaphthylene	M17-Au21691	NCP	%	116		70-130	Pass	
Anthracene	M17-Au21691	NCP	%	77		70-130	Pass	
Benz(a)anthracene	M17-Au21691	NCP	%	97		70-130	Pass	
Benzo(a)pyrene	M17-Au21691	NCP	%	103		70-130	Pass	
		NCP	%	103		70-130		
Benzo(b&j)fluoranthene	M17-Au21691	NCP	%	101		70-130	Pass	
Benzo(g.h.i)perylene	M17-Au21691	NCP	%	109			Pass	
Benzo(k)fluoranthene	M17-Au21691					70-130	Pass	
Chrysene	M17-Au21691	NCP	%	96		70-130	Pass	
Dibenz(a.h)anthracene	M17-Au21691	NCP	%	91		70-130	Pass	
Fluoranthene	M17-Au21691	NCP	%	106		70-130	Pass	
Fluorene	M17-Au21691	NCP	%	114		70-130	Pass	
Indeno(1.2.3-cd)pyrene	M17-Au21691	NCP	%	92		70-130	Pass	
Naphthalene	M17-Au21691	NCP	%	106		70-130	Pass	
Phenanthrene	M17-Au21691	NCP	%	75		70-130	Pass	
Pyrene	M17-Au21691	NCP	%	107		70-130	Pass	
Spike - % Recovery				T				
Organochlorine Pesticides	T			Result 1			_	
4.4'-DDD	M17-Au17506	NCP	%	128		70-130	Pass	
4.4'-DDE	M17-Au17506	NCP	%	108		70-130	Pass	
4.4'-DDT	M17-Au17506	NCP	%	79		70-130	Pass	
a-BHC	M17-Au17506	NCP	%	103		70-130	Pass	
Aldrin	M17-Au17506	NCP	%	101		70-130	Pass	
b-BHC	M17-Au17506	NCP	%	97		70-130	Pass	
d-BHC	M17-Au17506	NCP	%	106		70-130	Pass	
Dieldrin	M17-Au17506	NCP	%	106		70-130	Pass	
Endosulfan I	M17-Au17506	NCP	%	105		70-130	Pass	
Endosulfan II	M17-Au17506	NCP	%	109		70-130	Pass	
Endosulfan sulphate	M17-Au17506	NCP	%	111		70-130	Pass	
Endrin	M17-Au17506	NCP	%	90		70-130	Pass	
Endrin aldehyde	M17-Au17506	NCP	%	116		70-130	Pass	
Endrin ketone	M17-Au17506	NCP	%	111		70-130	Pass	
g-BHC (Lindane)	M17-Au17506	NCP	%	111		70-130	Pass	
Heptachlor	M17-Au17506	NCP	%	95		70-130	Pass	

							Τ		
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Hexachlorobenzene	M17-Au17506	NCP	%	103			70-130	Pass	
Methoxychlor	M17-Au17506	NCP	%	79			70-130	Pass	
Spike - % Recovery									
Polychlorinated Biphenyls				Result 1					
Aroclor-1260	S17-Au19524	NCP	%	84			70-130	Pass	
Spike - % Recovery									
Heavy Metals				Result 1					
Arsenic	M17-Au22335	NCP	%	69			75-125	Fail	Q08
Cadmium	M17-Au22335	NCP	%	85			75-125	Pass	
Chromium	M17-Au22335	NCP	%	87			75-125	Pass	
Copper	M17-Au22335	NCP	%	88			75-125	Pass	
Lead	M17-Au22335	NCP	%	301			75-125	Fail	Q08
Mercury	M17-Au22335	NCP	%	120			70-130	Pass	
Nickel	M17-Au22335	NCP	%	95			75-125	Pass	
Zinc	M17-Au22335	NCP	%	13			75-125	Fail	Q08
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate	-	Source					Lillits	LIIIIII	Code
Total Recoverable Hydrocarbon	s - 1999 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH C6-C9	M17-Au21696	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C10-C14	M17-Au21687	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C15-C28	M17-Au21687	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH C29-C36	M17-Au21687	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
Duplicate	1			1 00	100		3070	. 466	
BTEX				Result 1	Result 2	RPD			
Benzene	M17-Au21696	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Toluene	M17-Au21696	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Ethylbenzene	M17-Au21696	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
m&p-Xylenes	M17-Au21696	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
o-Xylene	M17-Au21696	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Xylenes - Total	M17-Au21696	NCP	mg/kg	< 0.3	< 0.3	<1	30%	Pass	
Duplicate								1 3.00	
Total Recoverable Hydrocarbon	s - 2013 NEPM Fract	ions		Result 1	Result 2	RPD			
Naphthalene	M17-Au21696	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
TRH C6-C10	M17-Au21696	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH >C10-C16	M17-Au21687	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH >C16-C34	M17-Au21687	NCP	mg/kg	< 100	< 100	<1	30%	Pass	
TRH >C34-C40	M17-Au21687	NCP	mg/kg	< 100	< 100	<1	30%	Pass	
Duplicate	111111111111111111111111111111111111111			1.00	1.00	7.	3070	. 455	
Polycyclic Aromatic Hydrocarbo	ons			Result 1	Result 2	RPD			
Acenaphthene	M17-Au22741	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Acenaphthylene	M17-Au22741	NCP	mg/kg	< 0.5	0.5	21	30%	Pass	
Anthracene	M17-Au22741	NCP	mg/kg	0.5	0.5	5.0	30%	Pass	
Benz(a)anthracene	M17-Au22741	NCP	mg/kg	1.7	1.8	5.0	30%	Pass	
Benzo(a)pyrene	M17-Au22741	NCP	mg/kg	1.9	1.7	15	30%	Pass	
Benzo(b&j)fluoranthene	M17-Au22741	NCP	mg/kg	1.5	1.2	19	30%	Pass	
Benzo(g.h.i)perylene	M17-Au22741	NCP	mg/kg	1.9	1.4	29	30%	Pass	
Benzo(k)fluoranthene	M17-Au22741	NCP	mg/kg	1.9	1.6	17	30%	Pass	
Chrysene	M17-Au22741	NCP	mg/kg	2.0	1.6	18	30%	Pass	
Dibenz(a.h)anthracene	M17-Au22741	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluoranthene	M17-Au22741	NCP	mg/kg	4.9	5.0	2.0	30%	Pass	
Fluorene	M17-Au22741	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	M17-Au22741	NCP	mg/kg	1.2	0.9	24	30%	Pass	
Naphthalene	M17-Au22741	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Phenanthrene	M17-Au22741	NCP	mg/kg	1.7	2.0	19	30%	Pass	
i nonanunon o	1 1V11/5/14/								

Duplicate				D 1/4	D # 0	222			
Organochlorine Pesticides	0			Result 1	Result 2	RPD		+	
Chlordanes - Total	S17-Au20951	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
4.4'-DDD	S17-Au20951	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDE	S17-Au20951	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDT	S17-Au20951	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
a-BHC	S17-Au20951	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Aldrin	S17-Au20951	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
b-BHC	S17-Au20951	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
d-BHC	S17-Au20951	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Dieldrin	S17-Au20951	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan I	S17-Au20951	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan II	S17-Au20951	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan sulphate	S17-Au20951	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin	S17-Au20951	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin aldehyde	S17-Au20951	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin ketone	S17-Au20951	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
g-BHC (Lindane)	S17-Au20951	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor	S17-Au20951	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor epoxide	S17-Au20951	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Hexachlorobenzene	S17-Au20951	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Methoxychlor	S17-Au20951	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Toxaphene	S17-Au20951	NCP	mg/kg	< 1	< 1	<1	30%	Pass	
Duplicate									
Polychlorinated Biphenyls				Result 1	Result 2	RPD			
Aroclor-1016	S17-Au20951	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1221	S17-Au20951	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1232	S17-Au20951	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1242	S17-Au20951	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1248	S17-Au20951	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1254	S17-Au20951	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1260	S17-Au20951	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Total PCB*	S17-Au20951	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Duplicate					,				
•				Result 1	Result 2	RPD			
% Clay	S17-Au19522	NCP	%	7.5	9.1	19	30%	Pass	
Conductivity (1:5 aqueous extract at 25°C)	M17-Au21180	NCP	uS/cm	50	58	15	30%	Pass	
pH (1:5 Aqueous extract)	M17-Au21180	NCP	pH Units	6.2	6.4	pass	30%	Pass	
Total Organic Carbon	M17-Au23636	NCP	%	2.6	2.4	10	30%	Pass	
% Moisture	M17-Au22090	NCP	%	9.2	8.9	3.0	30%	Pass	
Duplicate	INTI AGEE	1101	70	J.2	0.0	0.0	0070	1 433	
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	M17-Au22335	NCP	mg/kg	14	14	4.0	30%	Pass	
Cadmium	M17-Au22335	NCP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	M17-Au22335	NCP	mg/kg	19	20	1.0	30%	Pass	
		NCP		26	27	3.0	30%	1 1	
Copper	M17-Au22335	NCP	mg/kg	440	440	1.0	30%	Pass	
Lead	M17-Au22335		mg/kg					Pass	
Mercury	M17-Au22335	NCP	mg/kg	0.7	0.7	3.0	30%	Pass	
Nickel	M17-Au22335	NCP	mg/kg	24	24	2.0	30%	Pass	
Zinc	M17-Au22335	NCP	mg/kg	220	220	2.0	30%	Pass	

Comments

Sample Integrity

Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code	Description

F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).

N01

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

N02

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes. N04

Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs N07

The matrix spike recovery is outside of the recommended acceptance criteria. An acceptable recovery was obtained for the laboratory control sample indicating a sample matrix interference Q08

Authorised By

Nibha Vaidva Analytical Services Manager Alex Petridis Senior Analyst-Metal (VIC) Alex Petridis Senior Analyst-Organic (VIC) Senior Analyst-Volatile (VIC) Harry Bacalis Senior Analyst-Inorganic (VIC) Huong Le Jonathon Angell Senior Analyst-Inorganic (QLD) Joseph Edouard Senior Analyst-Organic (VIC) Nibha Vaidya Senior Analyst-Asbestos (NSW)

Glenn Jackson

National Operations Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins | mgt shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | mgt be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

JBS & G Australia (NSW) P/L Level 1, 50 Margaret St Sydney NSW 2000 lac-MRA

Certificate of Analysis

NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention: Scott Burrows

Report559175-WProject name3 SCHOOLSProject ID53033Received DateAug 17, 2017

Client Sample ID			RB20170817	TB20170817	R20TS20170817
Sample Matrix			Water	Water	Water
Eurofins mgt Sample No.			M17-Au22059	M17-Au22060	M17-Au22061
Date Sampled			Aug 17, 2017	Aug 17, 2017	Aug 17, 2017
Test/Reference	LOR	Unit			
Total Recoverable Hydrocarbons - 2013 NEPM		-			
Naphthalene ^{N02}	0.01	mg/L	< 0.01	< 0.01	120
TRH C6-C10 less BTEX (F1)N04	0.02	mg/L	< 0.02	< 0.02	-
TRH C6-C10	0.02	mg/L	< 0.02	< 0.02	80
TRH >C10-C16	0.05	mg/L	< 0.05	-	-
TRH >C10-C16 less Naphthalene (F2)N01	0.05	mg/L	< 0.05	-	-
TRH >C16-C34	0.1	mg/L	< 0.1	-	-
TRH >C34-C40	0.1	mg/L	< 0.1	-	-
Total Recoverable Hydrocarbons - 1999 NEPM	Fractions				
TRH C6-C9	0.02	mg/L	< 0.02	< 0.02	77
TRH C10-C14	0.05	mg/L	< 0.05	-	-
TRH C15-C28	0.1	mg/L	< 0.1	-	-
TRH C29-C36	0.1	mg/L	< 0.1	-	-
TRH C10-36 (Total)	0.1	mg/L	< 0.1	-	-
ВТЕХ	·				
Benzene	0.001	mg/L	< 0.001	< 0.001	100
Toluene	0.001	mg/L	< 0.001	< 0.001	110
Ethylbenzene	0.001	mg/L	< 0.001	< 0.001	110
m&p-Xylenes	0.002	mg/L	< 0.002	< 0.002	110
o-Xylene	0.001	mg/L	< 0.001	< 0.001	110
Xylenes - Total	0.003	mg/L	< 0.003	< 0.003	110
4-Bromofluorobenzene (surr.)	1	%	118	107	116
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	0.001	mg/L	< 0.001	-	-
Acenaphthylene	0.001	mg/L	< 0.001	-	-
Anthracene	0.001	mg/L	< 0.001	-	-
Benz(a)anthracene	0.001	mg/L	< 0.001	-	-
Benzo(a)pyrene	0.001	mg/L	< 0.001	-	-
Benzo(b&j)fluorantheneN07	0.001	mg/L	< 0.001	-	-
Benzo(g.h.i)perylene	0.001	mg/L	< 0.001	-	-
Benzo(k)fluoranthene	0.001	mg/L	< 0.001	-	-
Chrysene	0.001	mg/L	< 0.001	-	-
Dibenz(a.h)anthracene	0.001	mg/L	< 0.001	-	-
Fluoranthene	0.001	mg/L	< 0.001	-	-
Fluorene	0.001	mg/L	< 0.001	-	-
Indeno(1.2.3-cd)pyrene	0.001	mg/L	< 0.001	-	-

					D00
Client Sample ID			RB20170817	TB20170817	R20 TS20170817
Sample Matrix			Water	Water	Water
Eurofins mgt Sample No.			M17-Au22059	M17-Au22060	M17-Au22061
Date Sampled			Aug 17, 2017	Aug 17, 2017	Aug 17, 2017
Test/Reference	LOR	Unit			
Polycyclic Aromatic Hydrocarbons	•				
Naphthalene	0.001	mg/L	< 0.001	-	-
Phenanthrene	0.001	mg/L	< 0.001	-	-
Pyrene	0.001	mg/L	< 0.001	-	-
Total PAH*	0.001	mg/L	< 0.001	-	-
2-Fluorobiphenyl (surr.)	1	%	89	-	-
p-Terphenyl-d14 (surr.)	1	%	103	-	-
Organochlorine Pesticides					
Chlordanes - Total	0.001	mg/L	< 0.001	_	_
4.4'-DDD	0.0001	mg/L	< 0.0001	_	_
4.4'-DDE	0.0001	mg/L	< 0.0001	_	-
4.4'-DDT	0.0001	mg/L	< 0.0001	_	-
a-BHC	0.0001	mg/L	< 0.0001	_	_
Aldrin	0.0001	mg/L	< 0.0001	_	_
b-BHC	0.0001	mg/L	< 0.0001	_	_
d-BHC	0.0001	mg/L	< 0.0001	_	_
Dieldrin	0.0001	mg/L	< 0.0001	_	_
Endosulfan I	0.0001	mg/L	< 0.0001	_	_
Endosulfan II	0.0001	mg/L	< 0.0001	_	
Endosulfan sulphate	0.0001	mg/L	< 0.0001	_	
Endrin	0.0001	mg/L	< 0.0001		
Endrin aldehyde	0.0001	mg/L	< 0.0001	_	-
Endrin ketone	0.0001	mg/L	< 0.0001	-	-
g-BHC (Lindane)	0.0001	mg/L	< 0.0001	-	-
Heptachlor	0.0001		< 0.0001	-	-
Heptachlor epoxide	0.0001	mg/L	< 0.0001	-	-
Hexachlorobenzene	0.0001	mg/L mg/L	< 0.0001	-	-
	0.0001		< 0.0001	-	-
Methoxychlor Toxaphene	0.0001	mg/L	< 0.001	-	-
	0.0001	mg/L		-	-
Aldrin and Dieldrin (Total)* DDT + DDE + DDD (Total)*	0.0001	mg/L mg/L	< 0.0001 < 0.0001	-	-
	0.0001		< 0.0001	-	-
Vic EPA IWRG 621 Organochlorine pesticides (Total)* Vic EPA IWRG 621 Other organochlorine pesticides		mg/L		-	-
(Total)*	0.001	mg/L	< 0.001	-	-
Dibutylchlorendate (surr.)	1	%	102	-	-
Tetrachloro-m-xylene (surr.)	1	%	86	-	-
Heavy Metals					
Arsenic	0.001	mg/L	< 0.001	-	-
Cadmium	0.0002	mg/L	< 0.0002	-	-
Chromium	0.001	mg/L	< 0.001	-	-
Copper	0.001	mg/L	< 0.001	-	-
Lead	0.001	mg/L	< 0.001	-	-
Mercury	0.0001	mg/L	< 0.0001	-	-
Nickel	0.001	mg/L	< 0.001	-	-
Zinc	0.005	mg/L	< 0.005	-	-

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Testing Site Sydney	Extracted Aug 18, 2017	Holding Time 7 Day
- Method: TRH C6-C40 - LTM-ORG-2010	Cyuncy	7.0g 10, 2017	7 Day
Total Recoverable Hydrocarbons	Sydney	Aug 18, 2017	7 Day
- Method: TRH C6-C40 - LTM-ORG-2010			
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Melbourne	Aug 22, 2017	7 Day
- Method: LTM-ORG-2010 TRH C6-C36			
BTEX	Sydney	Aug 18, 2017	14 Day
- Method: TRH C6-C40 - LTM-ORG-2010			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Melbourne	Aug 22, 2017	7 Day
- Method: TRH C6-C40 - LTM-ORG-2010			
Polycyclic Aromatic Hydrocarbons	Melbourne	Aug 22, 2017	7 Day
- Method: LTM-ORG-2130 PAH and Phenols in Water by GCMS			
Organochlorine Pesticides	Melbourne	Aug 22, 2017	7 Day
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water			
Metals M8	Melbourne	Aug 18, 2017	28 Days

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Company Name: JBS & G Australia (NSW) P/L

Address: Level 1, 50 Margaret St

Sydney NSW 2000

Project Name: 3 SCHOOLS Project ID: 53033

Sydney Laboratory - NATA Site # 18217

Aug 17, 2017

Aug 17, 2017

Aug 17, 2017

RB20170817

TB20170817

TS20170817

Date Reported: Aug 24, 2017

Water

Water

Water

Order No.: Received: Aug 17, 2017 1:39 PM

 Report #:
 559175
 Due:
 Aug 24, 2017

 Phone:
 02 8245 0300
 Priority:
 5 Day

Fax: Contact Name: Scott Burrows

Sample Detail	% Clay	Asbestos - WA guidelines	ногр	pH (1:5 Aqueous extract)	Total Organic Carbon	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Polychlorinated Biphenyls	USA Leaching Procedure	Metals M8	втех	втех	Moisture Set	Cation Exchange Capacity	Total Recoverable Hydrocarbons	BTEXN and Volatile TRH	BTEXN and Volatile TRH	
Melbourne Laboratory - NATA Site # 1254 & 14271			Χ	Χ	Х	Х	Х	Х	Х	Χ	Х		Х	X	Χ	Χ	Х	

 $X \mid X$

Bris	sbane Laboratory - NATA Site # 20794					Χ											<u>. </u>		
Pert	h Laboratory - N	NATA Site # 237	'36																
Exte	External Laboratory																		
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID														
_	D1140 0 0 0 4	47.0047	Time	0.11	1447 4 00050	.,	.,	.,	.,	.,			.,		.,				\vdash
1	BH10_0.0-0.1	Aug 17, 2017		Soil	M17-Au22053	Х	Х	Х	Х	X	Х	Х	Х	Х	Х	Х	Х	·'	\longrightarrow
2	BH11_0.1-0.2	Aug 17, 2017		Soil	M17-Au22054	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Χ	Х		
3	BH12_0.4-0.5	Aug 17, 2017		Soil	M17-Au22055	Χ	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		
4	BH13_0.1-0.2	Aug 17, 2017		Soil	M17-Au22056	Χ	Х	Х	Х	Х	Х	Х	Х	Χ	Х	Х	Х		
5	BH14_0.1-0.2	Aug 17, 2017		Soil	M17-Au22057	Χ	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		
6	QA20170817	Aug 17, 2017		Soil	M17-Au22058					Х	Х		Х	Χ	Х		Х		

M17-Au22059

M17-Au22060

M17-Au22061

Χ

Eurofins | mgt 2-5 Kingston Town Close, Oakleigh, Victoria, Australia, 3166

ABN : 50 005 085 521 Telephone: +61 3 8564 5000 Report Number: 559175-W

Χ

Х

Χ

Page 4 of 12

Х

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane I/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

Perth
2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
NATA # 1261 Site # 23736

Company Name: JBS & G Australia (NSW) P/L

Address: Level 1, 50 Margaret St

> Sydney NSW 2000

Project Name: 3 SCHOOLS Project ID: 53033

Order No.: Received: Aug 17, 2017 1:39 PM

Report #: 559175 Due: Aug 24, 2017 Phone: 02 8245 0300 Priority: 5 Day

Fax: **Contact Name:** Scott Burrows

	Sample Detail Melbourne Laboratory - NATA Site # 1254 & 14271					% Clay	Asbestos - WA guidelines	HOLD	pH (1:5 Aqueous extract)	Total Organic Carbon	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Polychlorinated Biphenyls	USA Leaching Procedure	Metals M8	втех	втех	Moisture Set	Cation Exchange Capacity	Total Recoverable Hydrocarbons	BTEXN and Volatile TRH	BTEXN and Volatile TRH
Mell	oourne Laborato	ory - NATA Site	# 1254 & 1427	71				Х	Х	Х	Х	Х	Х	Х	Х	Χ		Х	Х	Χ	Х	Х
Syd	ney Laboratory	- NATA Site # 1	8217				Х										Х			Х	Х	Х
Bris	bane Laborator	y - NATA Site #	20794			Х															L	
Pert	h Laboratory - N	NATA Site # 237	36																		L	
10	BH11_0.4-0.5	Aug 17, 2017		Soil	M17-Au22062			Х													<u> </u>	
11		Aug 17, 2017		Soil	M17-Au22063			Х													<u> </u>	
12	BH12_0.1-0.2	Aug 17, 2017		Soil	M17-Au22064			Х													<u> </u>	
13	BH12_0.9-1.0	Aug 17, 2017		Soil	M17-Au22065			Х													<u> </u>	
14	BH12_1.4-1.5			Soil	M17-Au22066			Х													<u> </u>	
15		Aug 17, 2017		Soil	M17-Au22067			Х													<u> </u>	Ш
16	BH13_0.4-0.5	Aug 17, 2017		Soil	M17-Au22068			Х													<u> </u>	Ш
17		Aug 17, 2017		Soil	M17-Au22069			Х													<u> </u>	
18	QC20170817	Aug 17, 2017		Soil	M17-Au22070			Х													<u> </u>	
19		Aug 17, 2017		Soil	M17-Au22071			Х													<u> </u>	
20		Aug 17, 2017		US Leachate	M17-Au23735						Х			Х	Х						<u> </u>	
21	BH11_0.0-0.2	Aug 17, 2017		US Leachate	M17-Au23736						Х			Χ	Х						L	

Eurofins | mgt 2-5 Kingston Town Close, Oakleigh, Victoria, Australia, 3166 ABN: 50 005 085 521 Telephone: +61 3 8564 5000

Page 5 of 12

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane I/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

Perth
2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
NATA # 1261 Site # 23736

Company Name: JBS & G Australia (NSW) P/L

Address: Level 1, 50 Margaret St

> Sydney NSW 2000

Project Name: 3 SCHOOLS

Project ID: 53033 Order No.: Received: Aug 17, 2017 1:39 PM

Report #: 559175 Due: Aug 24, 2017 Phone: 02 8245 0300 Priority: 5 Day

Fax: **Contact Name:** Scott Burrows

	Sample Detail Melbourne Laboratory - NATA Site # 1254 & 14271					% Clay	Asbestos - WA guidelines	HOLD	pH (1:5 Aqueous extract)	Total Organic Carbon	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Polychlorinated Biphenyls	USA Leaching Procedure	Metals M8	втех	втех	Moisture Set	Cation Exchange Capacity	Total Recoverable Hydrocarbons	BTEXN and Volatile TRH	BTEXN and Volatile TRH
Mell	ourne Laborato	ory - NATA Site	# 1254 & 142	71				Х	Χ	Χ	Χ	Х	Х	Χ	Χ	Х		Х	Χ	Χ	Χ	Х
Syd	ney Laboratory	- NATA Site # 1	8217				Х										Х			Х	Χ	Х
Bris	bane Laborator	y - NATA Site #	20794			Χ																
Pert	h Laboratory - N	NATA Site # 237	36																			
22	BH12_0.4-0.5	Aug 17, 2017		US Leachate	M17-Au23737						Х			Χ	Χ							
23	23 BH13_0.1-0.2 Aug 17, 2017 US Leachate M17-Au23738							Х			Χ	Χ										
24				M17-Au23739						Х			Χ	Χ								
Test	Counts					5	5	10	5	5	12	7	5	5	12	7	7	6	5	7	2	2

Eurofins | mgt 2-5 Kingston Town Close, Oakleigh, Victoria, Australia, 3166 ABN: 50 005 085 521 Telephone: +61 3 8564 5000

Page 6 of 12

Date Reported: Aug 24, 2017

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. All biota results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis
- 8. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

 mg/kg: milligrams per kilogram
 mg/L: milligrams per litre

 ug/L: micrograms per litre
 ppm: Parts per million

 ppb: Parts per billion
 %: Percentage

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units

MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody

SRA Sample Receipt Advice

QSM Quality Systems Manual ver 5.1 US Department of Defense
CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within

TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR: RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150%-Phenols & PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.1 where no positive PFAS results have been reported have been reviewed and no data was affected.

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Eurofins | mgt 2-5 Kingston Town Close, Oakleigh, Victoria, Australia, 3166
ABN: 50 005 085 521 Telephone: +61 3 8564 5000

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank					
Total Recoverable Hydrocarbons - 2013 NEPM Fractions					
Naphthalene	mg/L	< 0.01	0.01	Pass	
TRH C6-C10	mg/L	< 0.02	0.02	Pass	
TRH >C10-C16	mg/L	< 0.05	0.05	Pass	
TRH >C16-C34	mg/L	< 0.1	0.1	Pass	
TRH >C34-C40	mg/L	< 0.1	0.1	Pass	
Method Blank					
Total Recoverable Hydrocarbons - 1999 NEPM Fractions					
TRH C6-C9	mg/L	< 0.02	0.02	Pass	
TRH C10-C14	mg/L	< 0.05	0.05	Pass	
TRH C15-C28	mg/L	< 0.1	0.1	Pass	
TRH C29-C36	mg/L	< 0.1	0.1	Pass	
Method Blank				•	
BTEX					
Benzene	mg/L	< 0.001	0.001	Pass	
Toluene	mg/L	< 0.001	0.001	Pass	
Ethylbenzene	mg/L	< 0.001	0.001	Pass	
m&p-Xylenes	mg/L	< 0.002	0.002	Pass	
o-Xylene	mg/L	< 0.001	0.001	Pass	
Xylenes - Total	mg/L	< 0.003	0.003	Pass	
Method Blank		1 0.000	0.000	1 400	
Polycyclic Aromatic Hydrocarbons		Т			
Acenaphthene	mg/L	< 0.001	0.001	Pass	
Acenaphthylene	mg/L	< 0.001	0.001	Pass	
Anthracene	mg/L	< 0.001	0.001	Pass	
Benz(a)anthracene	mg/L	< 0.001	0.001	Pass	
Benzo(a)pyrene	mg/L	< 0.001	0.001	Pass	
Benzo(b&j)fluoranthene	mg/L	< 0.001	0.001	Pass	
Benzo(g.h.i)perylene		< 0.001	0.001	Pass	
Benzo(k)fluoranthene	mg/L	< 0.001	0.001	Pass	
Chrysene	mg/L	< 0.001	0.001	Pass	
Dibenz(a.h)anthracene	mg/L	1			
, ,	mg/L	< 0.001	0.001	Pass	
Fluoranthene	mg/L	< 0.001	0.001	Pass	
Fluorene	mg/L	< 0.001	0.001	Pass	
Indeno(1.2.3-cd)pyrene	mg/L	< 0.001	0.001	Pass	
Naphthalene	mg/L	< 0.001	0.001	Pass	
Phenanthrene	mg/L	< 0.001	0.001	Pass	
Pyrene	mg/L	< 0.001	0.001	Pass	
Method Blank		Т		T	
Heavy Metals				 -	
Arsenic	mg/L	< 0.001	0.001	Pass	
Cadmium	mg/L	< 0.0002	0.0002	Pass	-
Chromium	mg/L	< 0.001	0.001	Pass	-
Copper	mg/L	< 0.001	0.001	Pass	
Lead	mg/L	< 0.001	0.001	Pass	
Mercury	mg/L	< 0.0001	0.0001	Pass	
Nickel	mg/L	< 0.001	0.001	Pass	
Zinc	mg/L	< 0.005	0.005	Pass	
LCS - % Recovery					
Total Recoverable Hydrocarbons - 2013 NEPM Fractions					<u> </u>
Naphthalene	%	84	70-130	Pass	

Test			Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
TRH C6-C10			%	109		70-130	Pass	
TRH >C10-C16			%	90		70-130	Pass	
LCS - % Recovery			,,,			10 100		
Total Recoverable Hydrocarbons -	1999 NEPM Fract	ions						
TRH C6-C9			%	110		70-130	Pass	
TRH C10-C14			%	84		70-130	Pass	
LCS - % Recovery			,,,	<u> </u>		10 100		
BTEX								
Benzene			%	106		70-130	Pass	
Toluene			%	108		70-130	Pass	
Ethylbenzene			%	101		70-130	Pass	
m&p-Xylenes			%	113		70-130	Pass	
Xylenes - Total			%	110		70-130	Pass	
LCS - % Recovery			/0	110		70-130	1 033	
Polycyclic Aromatic Hydrocarbons								
Acenaphthene	•		%	82		70-130	Pass	
Acenaphthylene			<u>%</u> %	99		70-130	Pass	
Anthracene			<u>%</u> %	85		70-130	Pass	
Benz(a)anthracene			<u>%</u> %	109		70-130	Pass	
			<u>%</u> %					
Benzo(a)pyrene Benzo(b&j)fluoranthene			<u>%</u> %	115 96		70-130 70-130	Pass Pass	
				1				
Benzo(g.h.i)perylene			%	107		70-130	Pass	
Benzo(k)fluoranthene			%	96		70-130	Pass	
Chrysene Chrysene			%	107		70-130	Pass	
Dibenz(a.h)anthracene			%	113		70-130	Pass	
Fluoranthene			%	103		70-130	Pass	
Fluorene			%	98		70-130	Pass	
Indeno(1.2.3-cd)pyrene			%	110		70-130	Pass	
Naphthalene			%	92		70-130	Pass	
Phenanthrene			%	91		70-130	Pass	
Pyrene			%	102		70-130	Pass	
LCS - % Recovery				T	T T	T	I	
Heavy Metals							_	
Arsenic			%	103		80-120	Pass	
Cadmium			%	99		80-120	Pass	
Chromium			%	100		80-120	Pass	
Copper			%	96		80-120	Pass	
Lead			%	104		80-120	Pass	
Mercury			%	96		75-125	Pass	
Nickel			%	97		80-120	Pass	
Zinc			%	102		80-120	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery								
Total Recoverable Hydrocarbons -	2013 NEPM Fract	ions		Result 1				
TRH >C10-C16	M17-Au22547	NCP	%	74		70-130	Pass	
Spike - % Recovery								
Total Recoverable Hydrocarbons -	1999 NEPM Fract	ions		Result 1				
TRH C10-C14	M17-Au22547	NCP	%	74		70-130	Pass	
Spike - % Recovery								
Polycyclic Aromatic Hydrocarbons				Result 1				
Acenaphthene	M17-Au21707	NCP	%	102		70-130	Pass	
Acenaphthylene	M17-Au21707	NCP	%	115		70-130	Pass	
Anthracene	M17-Au21707	NCP	%	111		70-130	Pass	
Benz(a)anthracene	M17-Au21707	NCP	%	123		70-130	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Benzo(a)pyrene	M17-Au21707	NCP	%	104			70-130	Pass	
Benzo(b&j)fluoranthene	M17-Au21707	NCP	%	110			70-130	Pass	
Benzo(g.h.i)perylene	M17-Au21707	NCP	%	126			70-130	Pass	
Benzo(k)fluoranthene	M17-Au21707	NCP	%	111			70-130	Pass	
Chrysene	M17-Au21707	NCP	%	122			70-130	Pass	
Dibenz(a.h)anthracene	M17-Au21707	NCP	%	124			70-130	Pass	
Fluoranthene	M17-Au21707	NCP	%	121			70-130	Pass	
Fluorene	M17-Au21707	NCP	%	110			70-130	Pass	
Indeno(1.2.3-cd)pyrene	M17-Au21707	NCP	%	130			70-130	Pass	
Naphthalene	M17-Au21707	NCP	%	107			70-130	Pass	
Phenanthrene	M17-Au21707	NCP	%	106			70-130	Pass	
Pyrene	M17-Au21707	NCP	%	120			70-130	Pass	
Spike - % Recovery									
Heavy Metals				Result 1					
Arsenic	M17-Au21776	NCP	%	109			75-125	Pass	
Cadmium	M17-Au21776	NCP	%	97			75-125	Pass	
Chromium	M17-Au21776	NCP	%	98			75-125	Pass	
Copper	M17-Au21776	NCP	%	97			75-125	Pass	
Lead	M17-Au21776	NCP	%	105			75-125	Pass	
Mercury	M17-Au21776	NCP	%	95			70-130	Pass	
Nickel	M17-Au21776	NCP	%	98			75-125	Pass	
Zinc	M17-Au21776	NCP	%	106			75-125	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
_ '									
Total Recoverable Hydrocarbons	s - 2013 NEPM Fract	ions		Result 1	Result 2	RPD			
Total Recoverable Hydrocarbons TRH >C10-C16	M17-Au22613	NCP	mg/L	0.76	0.76	RPD <1	30%	Pass	
				1			30% 30%	Pass Pass	
TRH >C10-C16	M17-Au22613	NCP	mg/L mg/L mg/L	0.76	0.76	<1			
TRH >C10-C16 TRH >C16-C34	M17-Au22613 M17-Au22613	NCP NCP	mg/L	0.76 < 0.1	0.76 < 0.1	<1 <1	30%	Pass	
TRH >C10-C16 TRH >C16-C34 TRH >C34-C40	M17-Au22613 M17-Au22613 M17-Au22613	NCP NCP	mg/L	0.76 < 0.1	0.76 < 0.1	<1 <1	30%	Pass	
TRH >C10-C16 TRH >C16-C34 TRH >C34-C40 Duplicate	M17-Au22613 M17-Au22613 M17-Au22613	NCP NCP	mg/L	0.76 < 0.1 < 0.1	0.76 < 0.1 < 0.1	<1 <1 <1	30%	Pass	
TRH >C10-C16 TRH >C16-C34 TRH >C34-C40 Duplicate Total Recoverable Hydrocarbons	M17-Au22613 M17-Au22613 M17-Au22613 S - 1999 NEPM Fract	NCP NCP NCP	mg/L mg/L mg/L	0.76 < 0.1 < 0.1 Result 1	0.76 < 0.1 < 0.1	<1 <1 <1 RPD	30%	Pass Pass	
TRH >C10-C16 TRH >C16-C34 TRH >C34-C40 Duplicate Total Recoverable Hydrocarbons TRH C10-C14	M17-Au22613 M17-Au22613 M17-Au22613 S - 1999 NEPM Fract M17-Au22613	NCP NCP NCP	mg/L mg/L	0.76 < 0.1 < 0.1 Result 1	0.76 < 0.1 < 0.1 Result 2	<1 <1 <1 RPD 3.0	30% 30% 30%	Pass Pass Pass	
TRH >C10-C16 TRH >C16-C34 TRH >C34-C40 Duplicate Total Recoverable Hydrocarbons TRH C10-C14 TRH C15-C28	M17-Au22613 M17-Au22613 M17-Au22613 S - 1999 NEPM Fract M17-Au22613 M17-Au22613	NCP NCP NCP sions NCP NCP	mg/L mg/L mg/L mg/L	0.76 < 0.1 < 0.1 Result 1 0.71 < 0.1	0.76 < 0.1 < 0.1 Result 2 0.73 < 0.1	<1 <1 <1 <1 RPD 3.0 <1	30% 30% 30% 30%	Pass Pass Pass Pass	
TRH >C10-C16 TRH >C16-C34 TRH >C34-C40 Duplicate Total Recoverable Hydrocarbons TRH C10-C14 TRH C15-C28 TRH C29-C36	M17-Au22613 M17-Au22613 M17-Au22613 S-1999 NEPM Fract M17-Au22613 M17-Au22613 M17-Au22613	NCP NCP NCP sions NCP NCP	mg/L mg/L mg/L mg/L	0.76 < 0.1 < 0.1 Result 1 0.71 < 0.1	0.76 < 0.1 < 0.1 Result 2 0.73 < 0.1	<1 <1 <1 <1 RPD 3.0 <1	30% 30% 30% 30%	Pass Pass Pass Pass	
TRH >C10-C16 TRH >C16-C34 TRH >C34-C40 Duplicate Total Recoverable Hydrocarbons TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate	M17-Au22613 M17-Au22613 M17-Au22613 S-1999 NEPM Fract M17-Au22613 M17-Au22613 M17-Au22613	NCP NCP NCP sions NCP NCP	mg/L mg/L mg/L mg/L	0.76 < 0.1 < 0.1 Result 1 0.71 < 0.1 < 0.1	0.76 < 0.1 < 0.1 Result 2 0.73 < 0.1 < 0.1	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30% 30% 30%	Pass Pass Pass Pass	
TRH >C10-C16 TRH >C16-C34 TRH >C34-C40 Duplicate Total Recoverable Hydrocarbons TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate Polycyclic Aromatic Hydrocarbo	M17-Au22613 M17-Au22613 M17-Au22613 S - 1999 NEPM Fract M17-Au22613 M17-Au22613	NCP NCP NCP Sions NCP NCP NCP	mg/L mg/L mg/L mg/L mg/L	0.76 < 0.1 < 0.1 Result 1 0.71 < 0.1 < 0.1	0.76 < 0.1 < 0.1 Result 2 0.73 < 0.1 < 0.1 Result 2	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass	
TRH >C10-C16 TRH >C16-C34 TRH >C34-C40 Duplicate Total Recoverable Hydrocarbons TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate Polycyclic Aromatic Hydrocarbo Acenaphthene	M17-Au22613 M17-Au22613 M17-Au22613 S - 1999 NEPM Fract M17-Au22613 M17-Au22613 M17-Au22613	NCP NCP NCP Sions NCP NCP NCP	mg/L mg/L mg/L mg/L mg/L mg/L	0.76 < 0.1 < 0.1 Result 1 0.71 < 0.1 < 0.1 Result 1 < 0.001	0.76 < 0.1 < 0.1 Result 2 0.73 < 0.1 < 0.1 Result 2 < 0.01	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass	
TRH >C10-C16 TRH >C16-C34 TRH >C34-C40 Duplicate Total Recoverable Hydrocarbons TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate Polycyclic Aromatic Hydrocarbo Acenaphthene Acenaphthylene	M17-Au22613 M17-Au22613 M17-Au22613 S - 1999 NEPM Fract M17-Au22613 M17-Au22613 M17-Au22613 M17-Au21704 M17-Au21704	NCP NCP ions NCP NCP NCP NCP NCP	mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.76 < 0.1 < 0.1 Result 1 0.71 < 0.1 < 0.1 Result 1 < 0.001	0.76 < 0.1 < 0.1 Result 2 0.73 < 0.1 < 0.1 Result 2 < 0.01	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass	
TRH >C10-C16 TRH >C16-C34 TRH >C34-C40 Duplicate Total Recoverable Hydrocarbons TRH C10-C14 TRH C29-C36 Duplicate Polycyclic Aromatic Hydrocarbo Acenaphthene Acenaphthylene Anthracene	M17-Au22613 M17-Au22613 M17-Au22613 S - 1999 NEPM Fract M17-Au22613 M17-Au22613 M17-Au22613 M17-Au21704 M17-Au21704 M17-Au21704	NCP NCP Sions NCP NCP NCP NCP NCP NCP NCP	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.76 < 0.1 < 0.1 Result 1 0.71 < 0.1 < 0.1 < 0.01 Result 1 < 0.001 < 0.001	0.76 < 0.1 < 0.1 < 0.1 Result 2 0.73 < 0.1 < 0.1 Result 2 < 0.001 < 0.001	<1 <1 <1 <1 RPD 3.0 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
TRH >C10-C16 TRH >C16-C34 TRH >C34-C40 Duplicate Total Recoverable Hydrocarbons TRH C10-C14 TRH C29-C36 Duplicate Polycyclic Aromatic Hydrocarbo Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene	M17-Au22613 M17-Au22613 M17-Au22613 S-1999 NEPM Fract M17-Au22613 M17-Au22613 M17-Au22613 M17-Au21704 M17-Au21704 M17-Au21704 M17-Au21704	NCP NCP Sions NCP	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.76 < 0.1 < 0.1 < 0.1 Result 1 0.71 < 0.1 < 0.1 Result 1 < 0.001 < 0.001 < 0.001	0.76 < 0.1 < 0.1 Result 2 0.73 < 0.1 < 0.1 Result 2 < 0.001 < 0.001 < 0.001	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
TRH >C10-C16 TRH >C16-C34 TRH >C34-C40 Duplicate Total Recoverable Hydrocarbons TRH C10-C14 TRH C29-C36 Duplicate Polycyclic Aromatic Hydrocarbo Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene	M17-Au22613 M17-Au22613 M17-Au22613 S-1999 NEPM Fract M17-Au22613 M17-Au22613 M17-Au22613 M17-Au21704 M17-Au21704 M17-Au21704 M17-Au21704 M17-Au21704 M17-Au21704	NCP	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.76 < 0.1 < 0.1 Result 1 0.71 < 0.1 < 0.1 Result 1 < 0.01 < 0.001 < 0.001 < 0.001 < 0.001	0.76 < 0.1 < 0.1 Result 2 0.73 < 0.1 < 0.1 Result 2 < 0.001 < 0.001 < 0.001 < 0.001	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
TRH >C10-C16 TRH >C16-C34 TRH >C34-C40 Duplicate Total Recoverable Hydrocarbons TRH C10-C14 TRH C29-C36 Duplicate Polycyclic Aromatic Hydrocarbo Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(b&j)fluoranthene Benzo(g.h.i)perylene	M17-Au22613 M17-Au22613 M17-Au22613 M17-Au22613 M17-Au22613 M17-Au22613 M17-Au22613 M17-Au21704 M17-Au21704 M17-Au21704 M17-Au21704 M17-Au21704 M17-Au21704 M17-Au21704	NCP	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.76 < 0.1 < 0.1 < 0.1 Result 1 0.71 < 0.1 < 0.1 Result 1 < 0.01 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001	0.76 < 0.1 < 0.1 < 0.1 Result 2 0.73 < 0.1 < 0.01 Result 2 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
TRH >C10-C16 TRH >C16-C34 TRH >C34-C40 Duplicate Total Recoverable Hydrocarbons TRH C10-C14 TRH C29-C36 Duplicate Polycyclic Aromatic Hydrocarbo Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(b&j)fluoranthene	M17-Au22613 M17-Au22613 M17-Au22613 M17-Au22613 M17-Au22613 M17-Au22613 M17-Au22613 M17-Au21704	NCP	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.76 < 0.1 < 0.1 < 0.1 Result 1 0.71 < 0.1 < 0.1 Result 1 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001	0.76 < 0.1 < 0.1 < 0.1 Result 2 0.73 < 0.1 < 0.01 Result 2 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
TRH >C10-C16 TRH >C16-C34 TRH >C34-C40 Duplicate Total Recoverable Hydrocarbons TRH C10-C14 TRH C29-C36 Duplicate Polycyclic Aromatic Hydrocarbo Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(b&j)fluoranthene Benzo(g.h.i)perylene Benzo(k)fluoranthene	M17-Au22613 M17-Au22613 M17-Au22613 M17-Au22613 M17-Au22613 M17-Au22613 M17-Au22613 M17-Au21704	NCP	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.76 < 0.1 < 0.1 < 0.1 Result 1 0.71 < 0.1 < 0.1 < 0.01 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001	0.76 < 0.1 < 0.1 < 0.1 Result 2 0.73 < 0.1 < 0.01 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
TRH >C10-C16 TRH >C16-C34 TRH >C34-C40 Duplicate Total Recoverable Hydrocarbons TRH C10-C14 TRH C29-C36 Duplicate Polycyclic Aromatic Hydrocarbo Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b&j)fluoranthene Benzo(g.h.i)perylene Benzo(k)fluoranthene Chrysene	M17-Au22613 M17-Au22613 M17-Au22613 M17-Au22613 M17-Au22613 M17-Au22613 M17-Au22613 M17-Au21704 M17-Au21704 M17-Au21704 M17-Au21704 M17-Au21704 M17-Au21704 M17-Au21704 M17-Au21704 M17-Au21704 M17-Au21704 M17-Au21704	NCP	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.76 < 0.1 < 0.1 < 0.1 Result 1 0.71 < 0.1 < 0.01 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001	0.76 < 0.1 < 0.1 < 0.1 Result 2 0.73 < 0.1 < 0.01 Result 2 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
TRH >C10-C16 TRH >C16-C34 TRH >C34-C40 Duplicate Total Recoverable Hydrocarbons TRH C10-C14 TRH C29-C36 Duplicate Polycyclic Aromatic Hydrocarbo Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene Benzo(g.h.i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a.h)anthracene	M17-Au22613 M17-Au22613 M17-Au22613 M17-Au22613 M17-Au22613 M17-Au22613 M17-Au22613 M17-Au21704	NCP	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.76 < 0.1 < 0.1 < 0.1 Result 1 0.71 < 0.1 < 0.01 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001	0.76 < 0.1 < 0.1 < 0.1 Result 2 0.73 < 0.1 < 0.01 Result 2 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
TRH >C10-C16 TRH >C16-C34 TRH >C34-C40 Duplicate Total Recoverable Hydrocarbons TRH C10-C14 TRH C29-C36 Duplicate Polycyclic Aromatic Hydrocarbo Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b&j)fluoranthene Benzo(g.h.i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a.h)anthracene Fluoranthene	M17-Au22613 M17-Au22613 M17-Au22613 M17-Au22613 M17-Au22613 M17-Au22613 M17-Au22613 M17-Au22613 M17-Au21704	NCP	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.76 < 0.1 < 0.1 < 0.1 Result 1 0.71 < 0.1 < 0.1 Result 1 < 0.01 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001	0.76 < 0.1 < 0.1 < 0.1 Result 2 0.73 < 0.1 < 0.01 Result 2 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
TRH >C10-C16 TRH >C16-C34 TRH >C34-C40 Duplicate Total Recoverable Hydrocarbons TRH C10-C14 TRH C29-C36 Duplicate Polycyclic Aromatic Hydrocarbo Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b&j)fluoranthene Benzo(b,hi)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluorene	M17-Au22613 M17-Au22613 M17-Au22613 M17-Au22613 M17-Au22613 M17-Au22613 M17-Au22613 M17-Au22613 M17-Au21704	NCP	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.76 < 0.1 < 0.1 < 0.1 Result 1 0.71 < 0.1 < 0.1 Result 1 < 0.01 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001	0.76 < 0.1 < 0.1 < 0.1 Result 2 0.73 < 0.1 < 0.01 Result 2 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
TRH >C10-C16 TRH >C16-C34 TRH >C34-C40 Duplicate Total Recoverable Hydrocarbons TRH C10-C14 TRH C29-C36 Duplicate Polycyclic Aromatic Hydrocarbo Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(b&j)fluoranthene Benzo(g.h.i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a.h)anthracene Fluoranthene Fluorene Indeno(1.2.3-cd)pyrene	M17-Au22613 M17-Au22613 M17-Au22613 M17-Au22613 M17-Au22613 M17-Au22613 M17-Au22613 M17-Au22613 M17-Au21704	NCP	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.76 < 0.1 < 0.1 < 0.1 Result 1 0.71 < 0.1 < 0.1 < 0.01 Result 1 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001	0.76 < 0.1 < 0.1 < 0.1 Result 2 0.73 < 0.1 < 0.01 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	

Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	M17-Au21776	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Cadmium	M17-Au21776	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Chromium	M17-Au21776	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Copper	M17-Au21776	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Lead	M17-Au21776	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Mercury	M17-Au21776	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Nickel	M17-Au21776	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Zinc	M17-Au21776	NCP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Duplicate									
Total Recoverable Hydrocarb	ons - 2013 NEPM Fract	ions		Result 1	Result 2	RPD			
Naphthalene	A17-Au20518	NCP	mg/L	< 0.01	< 0.01	<1	30%	Pass	
TRH C6-C10	A17-Au20518	NCP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
Duplicate									
Total Recoverable Hydrocarb	ons - 1999 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH C6-C9	A17-Au20518	NCP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
Duplicate									
ВТЕХ				Result 1	Result 2	RPD			
Benzene	A17-Au20518	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Toluene	A17-Au20518	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Ethylbenzene	A17-Au20518	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
m&p-Xylenes	A17-Au20518	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
o-Xylene	A17-Au20518	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Xylenes - Total	A17-Au20518	NCP	mg/L	< 0.003	< 0.003	<1	30%	Pass	

Comments

Sample Integrity

Custody Seals Intact (if used) N/A Attempt to Chill was evident Yes Sample correctly preserved Yes Appropriate sample containers have been used Yes Sample containers for volatile analysis received with minimal headspace Yes Samples received within HoldingTime Yes Some samples have been subcontracted No

Qualifier Codes/Comments

Code Description

F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).

N01

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes. N04

Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs N07

R20 This sample is a Trip Spike and therefore all results are reported as a percentage

Authorised By

N02

Nibha Vaidya Analytical Services Manager Alex Petridis Senior Analyst-Metal (VIC) Alex Petridis Senior Analyst-Organic (VIC) Harry Bacalis Senior Analyst-Volatile (VIC) Joseph Edouard Senior Analyst-Organic (VIC)

Glenn Jackson

National Operations Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins. Impt shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins I mgt be liable for consequential changes including, but not limited to, lost profits, damages for reliable to meet deadlines and lost production arising from this report. This document shall be reported used everyein full and are relates only to the letters tested. Unless indicated otherwise, the tests were performed on the samples as received.

Melbourne
3-5 Kingston Town Close
Oakleigh Vic 3166
Phone: +61 3 8564 5000
NATA # 1261
Site # 1254 & 14271

Unit F3, Building F 1/21 Smallwood Place 16 Mars Road Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Perth Yelun 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

ABN - 50 005 085 521

e.mail: EnviroSales@eurofins.com

web: www.eurofins.com.au

Sample Receipt Advice

Company name: JBS & G Australia (NSW) P/L

Contact name: Scott Burrows

ESA 3 SCHOOLS - GREENWICH Project name:

Project ID: 52885

COC number: Not provided

Turn around time: 5 Day

Aug 17, 2017 2:24 PM Date/Time received:

Eurofins | mgt reference: 560283

Sample information

- \mathbf{V} A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- \mathbf{V} All samples have been received as described on the above COC.
- \mathbf{V} COC has been completed correctly.
- \square Attempt to chill was evident.
- \mathbf{V} Appropriately preserved sample containers have been used.
- \mathbf{V} All samples were received in good condition.
- \mathbf{V} Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- \mathbf{V} Appropriate sample containers have been used.
- \boxtimes Some samples have been subcontracted.
- N/A Custody Seals intact (if used).

Contact notes

If you have any questions with respect to these samples please contact:

Nibha Vaidya on Phone: +61 (2) 9900 8400 or by e.mail: NibhaVaidya@eurofins.com

Results will be delivered electronically via e.mail to Scott Burrows - SBurrows@jbsg.com.au.

Order No.:

Report #:

Phone:

Fax:

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

02 8245 0300

Sydney
Unit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 9900 8400
NATA # 1261 Site # 18217

Brisbane I/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794 Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Company Name: JBS & G Australia (NSW) P/L

Address: Level 1, 50 Margaret St

Sydney NSW 2000

Project Name: **ESA 3 SCHOOLS - GREENWICH**

Project ID: 52885

Received: Aug 17, 2017 2:24 PM 560283

Due: Aug 24, 2017

Priority: 5 Day

Contact Name: Scott Burrows

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

	Sample Detail Melbourne Laboratory - NATA Site # 1254 & 14271									
Melb	Melbourne Laboratory - NATA Site # 1254 & 14271									
Sydr	Sydney Laboratory - NATA Site # 18217									
		y - NATA Site #								
		NATA Site # 237	36							
	rnal Laboratory		Camadina	Matrix	LAB ID					
No	Sample ID	Sample Date	Sampling Time	Matrix	LABID					
1	BH01 0.05- 0.15	Not Provided		US Leachate	M17-Au22286	Х	Х	х		
2	BH02 0.1-0.2	Not Provided		US Leachate	M17-Au22287	Х	Х	Х		
3	BH03 0.05- 0.15	Not Provided		US Leachate	M17-Au22288	Х	Х	х		
4	4 BH04 0.1-0.2 Not Provided US Leachate M17-Au22289									
5	M17-Au22290	Х	Х	Х						
6	BH06 0.1-0.2	M17-Au22291	Х	Х	Х					
7	BH07 0.1-0.2	M17-Au22292	Х	Х	Х					
8	BH08 0.1-0.2	Not Provided		US Leachate	M17-Au22293	Х	Х	Х		

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney
Unit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 9900 8400
NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794 Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Company Name: JBS & G Australia (NSW) P/L

Address: Level 1, 50 Margaret St

Sydney NSW 2000

Project Name: ESA 3 SCHOOLS - GREENWICH

Project ID: 52885

 Order No.:
 Received:
 Aug 17, 2017 2:24 PM

 Report #:
 560283
 Due:
 Aug 24, 2017

Phone: 02 8245 0300 Priority: 5 Day

Fax: Contact Name: Scott Burrows

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

		Sa	imple Detail			Polycyclic Aromatic Hydrocarbons	USA Leaching Procedure	Metals M8	
Mell	oourne Laborate	ory - NATA Site	# 1254 & 142	71		Х	Х	Х	
Syd	ney Laboratory	- NATA Site # 1	8217						1
Bris	Brisbane Laboratory - NATA Site # 20794								
Pert	h Laboratory - I								
9	9 BH09 0.1-0.2 Not Provided US Leachate M17-Au22294							Х	ı
Test	Test Counts							9	ı

JBS & G Australia (NSW) P/L Level 1, 50 Margaret St Sydney NSW 2000

Certificate of Analysis

NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention: Scott Burrows

Report 560283-L

Project name ESA 3 SCHOOLS - GREENWICH

Project ID 52885

Received Date Aug 17, 2017

Client Sample ID			BH01 0.05-0.15	BH02 0.1-0.2	BH03 0.05-0.15	BH04 0.1-0.2
Sample Matrix			US Leachate	US Leachate	US Leachate	US Leachate
Eurofins mgt Sample No.			M17-Au22286	M17-Au22287	M17-Au22288	M17-Au22289
Date Sampled			Not Provided	Not Provided	Not Provided	Not Provided
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons	LOIK	Offic				
Acenaphthene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Acenaphthylene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Anthracene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benz(a)anthracene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzo(a)pyrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzo(b&j)fluoranthene ^{N07}	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzo(g.h.i)perylene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzo(k)fluoranthene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Chrysene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Dibenz(a.h)anthracene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Fluoranthene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Fluorene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Indeno(1.2.3-cd)pyrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Naphthalene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Phenanthrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Pyrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Total PAH*	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
2-Fluorobiphenyl (surr.)	1	%	150	106	128	130
p-Terphenyl-d14 (surr.)	1	%	139	142	145	133
Heavy Metals						
Arsenic	0.01	mg/L	< 0.01	< 0.01	< 0.01	< 0.01
Cadmium	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
Chromium	0.01	mg/L	< 0.01	< 0.01	< 0.01	< 0.01
Copper	0.01	mg/L	< 0.01	< 0.01	< 0.01	0.04
Lead	0.01	mg/L	< 0.01	< 0.01	< 0.01	< 0.01
Mercury	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Nickel	0.01	mg/L	< 0.01	< 0.01	< 0.01	0.01
Zinc	0.01	mg/L	0.03	< 0.01	< 0.01	0.03
USA Leaching Procedure						
Leachate Fluid ^{C01}		comment	1.0	1.0	1.0	1.0
pH (initial)	0.1	pH Units	5.2	5.2	5.7	5.8
pH (Leachate fluid)	0.1	pH Units	5.0	5.0	5.0	5.0
pH (off)	0.1	pH Units	5.5	6.2	6.1	5.6
pH (USA HCI addition)	0.1	pH Units	1.9	1.9	1.9	2.0

Client Sample ID			BH05 0.0-0.1	BH06 0.1-0.2	BH07 0.1-0.2	BH08 0.1-0.2
Sample Matrix			US Leachate	US Leachate	US Leachate	US Leachate
Eurofins mgt Sample No.			M17-Au22290	M17-Au22291	M17-Au22292	M17-Au22293
Date Sampled			Not Provided	Not Provided	Not Provided	Not Provided
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons		•				
Acenaphthene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Acenaphthylene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Anthracene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benz(a)anthracene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzo(a)pyrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzo(b&j)fluoranthene ^{N07}	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzo(g.h.i)perylene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzo(k)fluoranthene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Chrysene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Dibenz(a.h)anthracene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Fluoranthene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Fluorene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Indeno(1.2.3-cd)pyrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Naphthalene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Phenanthrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Pyrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Total PAH*	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
2-Fluorobiphenyl (surr.)	1	%	99	133	101	108
p-Terphenyl-d14 (surr.)	1	%	108	128	94	131
Heavy Metals						
Arsenic	0.01	mg/L	< 0.01	< 0.01	< 0.01	< 0.01
Cadmium	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
Chromium	0.01	mg/L	< 0.01	< 0.01	< 0.01	< 0.01
Copper	0.01	mg/L	< 0.01	< 0.01	< 0.01	< 0.01
Lead	0.01	mg/L	< 0.01	0.01	0.02	< 0.01
Mercury	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Nickel	0.01	mg/L	< 0.01	< 0.01	< 0.01	< 0.01
Zinc	0.01	mg/L	0.18	0.02	0.04	< 0.01
USA Leaching Procedure						
Leachate Fluid ^{C01}		comment	1.0	1.0	1.0	1.0
pH (initial)	0.1	pH Units	4.8	5.3	5.4	9.6
pH (Leachate fluid)	0.1	pH Units	5.0	5.0	5.0	5.0
pH (off)	0.1	pH Units	5.0	5.1	5.0	11
pH (USA HCl addition)	0.1	pH Units	NA	1.9	1.8	2.0

Client Sample ID Sample Matrix Eurofins mgt Sample No. Date Sampled			BH09 0.1-0.2 US Leachate M17-Au22294 Not Provided
Test/Reference	LOR	Unit	
Polycyclic Aromatic Hydrocarbons			
Acenaphthene	0.001	mg/L	< 0.001
Acenaphthylene	0.001	mg/L	< 0.001
Anthracene	0.001	mg/L	< 0.001
Benz(a)anthracene	0.001	mg/L	< 0.001
Benzo(a)pyrene	0.001	mg/L	< 0.001
Benzo(b&j)fluoranthene ^{N07}	0.001	mg/L	< 0.001
Benzo(g.h.i)perylene	0.001	mg/L	< 0.001

Client Sample ID			BH09 0.1-0.2
Sample Matrix			US Leachate
Eurofins mgt Sample No.			M17-Au22294
Date Sampled			Not Provided
Test/Reference	LOR	Unit	
Polycyclic Aromatic Hydrocarbons		•	
Benzo(k)fluoranthene	0.001	mg/L	< 0.001
Chrysene	0.001	mg/L	< 0.001
Dibenz(a.h)anthracene	0.001	mg/L	< 0.001
Fluoranthene	0.001	mg/L	< 0.001
Fluorene	0.001	mg/L	< 0.001
Indeno(1.2.3-cd)pyrene	0.001	mg/L	< 0.001
Naphthalene	0.001	mg/L	< 0.001
Phenanthrene	0.001	mg/L	< 0.001
Pyrene	0.001	mg/L	< 0.001
Total PAH*	0.001	mg/L	< 0.001
2-Fluorobiphenyl (surr.)	1	%	122
p-Terphenyl-d14 (surr.)	1	%	116
Heavy Metals		_	
Arsenic	0.01	mg/L	< 0.01
Cadmium	0.005	mg/L	< 0.005
Chromium	0.01	mg/L	< 0.01
Copper	0.01	mg/L	< 0.01
Lead	0.01	mg/L	0.02
Mercury	0.001	mg/L	< 0.001
Nickel	0.01	mg/L	< 0.01
Zinc	0.01	mg/L	0.03
USA Leaching Procedure			
Leachate Fluid ^{C01}		comment	1.0
pH (initial)	0.1	pH Units	6.2
pH (Leachate fluid)	0.1	pH Units	5.0
pH (off)	0.1	pH Units	5.1
pH (USA HCl addition)	0.1	pH Units	2.0

Report Number: 560283-L

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Polycyclic Aromatic Hydrocarbons	Melbourne	Aug 23, 2017	7 Day
- Method: LTM-ORG-2140 PAH and Phenols in Soils by GCMS			
Metals M8	Melbourne	Aug 21, 2017	28 Days

Report Number: 560283-L

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane I/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Received:

Due:

Perth
2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
NATA # 1261 Site # 23736

Page 5 of 10

Aug 17, 2017 2:24 PM

Aug 24, 2017

Scott Burrows

5 Day

Company Name: JBS & G Australia (NSW) P/L

Address: Level 1, 50 Margaret St

> Sydney NSW 2000

ESA 3 SCHOOLS - GREENWICH Project Name:

Project ID: 52885

Date Reported: Aug 25, 2017

Fax:

Order No.:

Report #: 560283 Phone: 02 8245 0300

Priority: **Contact Name:**

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

Sample Detail							USA Leaching Procedure	Metals M8
Melbourne Laboratory - NATA Site # 1254 & 14271						Х	Х	Х
Sydney Laboratory - NATA Site # 18217								
Brisbane Laboratory - NATA Site # 20794								
Perth Laboratory - NATA Site # 23736								
External Laboratory								
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID			
1	BH01 0.05- 0.15	Not Provided		US Leachate	M17-Au22286	Х	х	х
2	BH02 0.1-0.2	Not Provided		US Leachate	M17-Au22287	Х	Х	Х
3	BH03 0.05- 0.15	Not Provided		US Leachate	M17-Au22288	х	х	х
4	BH04 0.1-0.2	Not Provided		US Leachate	M17-Au22289	Х	Х	Х
5	BH05 0.0-0.1	Not Provided		US Leachate	M17-Au22290	Х	Х	Х
6	BH06 0.1-0.2	Not Provided		US Leachate	M17-Au22291	Х	Х	Х
7	BH07 0.1-0.2	Not Provided		US Leachate	M17-Au22292	Х	Х	Х
8	BH08 0.1-0.2	Not Provided		US Leachate	M17-Au22293	Х	Х	Х

Eurofins | mgt 2-5 Kingston Town Close, Oakleigh, Victoria, Australia, 3166

Report Number: 560283-L

ABN- 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au

Phone:

Fax:

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794 Perth
2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
NATA # 1261
Site # 23736

Company Name: JBS & G Australia (NSW) P/L

Address: Level 1, 50 Margaret St

Sydney NSW 2000

Project Name: ESA 3 SCHOOLS - GREENWICH

Project ID: 52885

 Order No.:
 Received:
 Aug 17, 2017 2:24 PM

 Report #:
 560283
 Due:
 Aug 24, 2017

560283 **Due:** Aug 24, 2017 02 8245 0300 **Priority:** 5 Day

Contact Name: Scott Burrows

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

Sample Detail	Polycyclic Aromatic Hydrocarbons	USA Leaching Procedure	Metals M8
Melbourne Laboratory - NATA Site # 1254 & 14271	Х	Х	Х
Sydney Laboratory - NATA Site # 18217			
Brisbane Laboratory - NATA Site # 20794			
Perth Laboratory - NATA Site # 23736			
9 BH09 0.1-0.2 Not Provided US Leachate M17-Au22294	Х	Х	Х
Test Counts	9	9	9

Eurofins | mgt 2-5 Kingston Town Close, Oakleigh, Victoria, Australia, 3166

25, 2017 ABN : 50 005 085 521 Telephone: +61 3 8564 5000 Report Number: 560283-L

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. All biota results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis
- 8. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

 mg/kg: milligrams per kilogram
 mg/L: milligrams per litre

 ug/L: micrograms per litre
 ppm: Parts per million

 ppb: Parts per billion
 %: Percentage

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units

MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody

SRA Sample Receipt Advice

QSM Quality Systems Manual ver 5.1 US Department of Defense
CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR: RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150%-Phenols & PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.1 where no positive PFAS results have been reported have been reviewed and no data was affected.

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported
 in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Eurofins | mgt 2-5 Kingston Town Close, Oakleigh, Victoria, Australia, 3166 ABN: 50 005 085 521 Telephone: +61 3 8564 5000

Report Number: 560283-L

Quality Control Results

Test			Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Method Blank									
Heavy Metals									
Arsenic			mg/L	< 0.01			0.01	Pass	
Cadmium			mg/L	< 0.005			0.005	Pass	
Chromium			mg/L	< 0.01			0.01	Pass	
Copper			mg/L	< 0.01			0.01	Pass	
Lead			mg/L	< 0.01			0.01	Pass	
Mercury			mg/L	< 0.001			0.001	Pass	
Nickel			mg/L	< 0.01			0.01	Pass	
Zinc			mg/L	< 0.01			0.01	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery									
Polycyclic Aromatic Hydrocarbo	ns			Result 1					
Acenaphthene	M17-Au23735	NCP	%	109			70-130	Pass	
Acenaphthylene	M17-Au23735	NCP	%	119			70-130	Pass	
Anthracene	M17-Au23735	NCP	%	115			70-130	Pass	
Benz(a)anthracene	M17-Au23735	NCP	%	120			70-130	Pass	
Benzo(a)pyrene	M17-Au23735	NCP	%	129			70-130	Pass	
Benzo(b&j)fluoranthene	M17-Au23735	NCP	%	115			70-130	Pass	
Benzo(g.h.i)perylene	M17-Au23735	NCP	%	121			70-130	Pass	
Benzo(k)fluoranthene	M17-Au23735	NCP	%	112			70-130	Pass	
Chrysene	M17-Au23735	NCP	%	129			70-130	Pass	
Dibenz(a.h)anthracene	M17-Au23735	NCP	%	127			70-130	Pass	
Fluoranthene	M17-Au23735	NCP	%	128			70-130	Pass	
Fluorene	M17-Au23735	NCP	%	114			70-130	Pass	
Indeno(1.2.3-cd)pyrene	M17-Au23735	NCP	%	126			70-130	Pass	
Naphthalene	M17-Au23735	NCP	%	112			70-130	Pass	
Phenanthrene	M17-Au23735	NCP	%	104			70-130	Pass	
Pyrene	M17-Au23735	NCP	% %	128			70-130	Pass	
Spike - % Recovery	W117-Au23733	INCI	70	120			70-130	1 033	
Heavy Metals				Result 1			I		
Arsenic	M17-Au23737	NCP	%	104			75-125	Pass	
Cadmium		NCP	%	104				Pass	
	M17-Au23737	NCP		<u> </u>			75-125		
Chromium	M17-Au23737		%	103			75-125	Pass	
Copper	M17-Au23737	NCP	%	101			75-125	Pass	
Lead	M17-Au22750	NCP	%	97			75-125	Pass	
Mercury	M17-Au23737	NCP	%	101			70-130	Pass	
Nickel	M17-Au23737	NCP	%	101			75-125	Pass	
Zinc	M17-Au23737 Lab Sample ID	NCP QA	% Units	106 Result 1			75-125 Acceptance	Pass Pass	Qualifying
		Source					Limits	Limits	Code
Duplicate Heavy Metals				Postili 1	Booult 0	DDD			
Heavy Metals	M47 A.:00750	NCD	m c:/l	Result 1	Result 2	RPD	200/	Dess	
Arsenic	M17-Au22750	NCP	mg/L	< 0.01	< 0.01	<1	30%	Pass	
Cadmium	M17-Au22750	NCP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Chromium	M17-Au22750	NCP	mg/L	< 0.01	< 0.01	<1	30%	Pass	
Copper	M17-Au22750	NCP	mg/L	< 0.01	< 0.01	<1	30%	Pass	
Lead	M17-Au22750	NCP	mg/L	< 0.01	< 0.01	<1	30%	Pass	
Mercury	M17-Au22750	NCP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Nickel	M17-Au22750	NCP	mg/L	< 0.01	< 0.01	<1	30%	Pass	
Zinc	M17-Au22750	NCP	mg/L	0.05	0.05	4.0	30%	Pass	

Duplicate								
Polycyclic Aromatic Hydrocarbons					Result 2	RPD		
Acenaphthene	M17-Au22291	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass
Acenaphthylene	M17-Au22291	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass
Anthracene	M17-Au22291	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass
Benz(a)anthracene	M17-Au22291	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass
Benzo(a)pyrene	M17-Au22291	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass
Benzo(b&j)fluoranthene	M17-Au22291	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass
Benzo(g.h.i)perylene	M17-Au22291	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass
Benzo(k)fluoranthene	M17-Au22291	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass
Chrysene	M17-Au22291	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass
Dibenz(a.h)anthracene	M17-Au22291	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass
Fluoranthene	M17-Au22291	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass
Fluorene	M17-Au22291	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass
Indeno(1.2.3-cd)pyrene	M17-Au22291	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass
Naphthalene	M17-Au22291	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass
Phenanthrene	M17-Au22291	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass
Pyrene	M17-Au22291	СР	mg/L	< 0.001	< 0.001	<1	30%	Pass

Comments

Sample Integrity

Custody Seals Intact (if used) N/A Attempt to Chill was evident Yes Sample correctly preserved Yes Appropriate sample containers have been used Yes Sample containers for volatile analysis received with minimal headspace Yes Samples received within HoldingTime Yes Some samples have been subcontracted No

Qualifier Codes/Comments

Code Description

Leachate Fluid Key: 1 - pH 5.0; 2 - pH 2.9; 3 - pH 9.2; 4 - Reagent (DI) water; 5 - Client sample, 6 - other C01

Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs N07

Authorised By

Nibha Vaidva Analytical Services Manager Alex Petridis Senior Analyst-Metal (VIC) Alex Petridis Senior Analyst-Organic (VIC) Joseph Edouard Senior Analyst-Organic (VIC)

Glenn Jackson

National Operations Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins | mgt shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | mgt be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Report Number: 560283-L

Enviro Sample Vic

From:

COC NSW

Sent:

Thursday, 31 August 2017 5:15 PM

To:

Enviro Sample Vic **Enviro Sample NSW**

Cc: Subject:

FW: 1 DAY TAT ADDITIONAL: Metals missed on sample

G(005

Importance:

High

Hi Guvs

Please see below Additional on 1 Day TAT, sample in Melbourne. Please proceed.

Rupan Virk

From: COC NSW

Sent: Thursday, 31 August 2017 5:09 PM To: Andrew Black; Enviro Sample NSW

Subject: RE: 1 DAY TAT ADDITIONAL: Metals missed on sample

Hey Andrew

Done as 561097, sample in Melb. Should SRA be sent as well?

From: Andrew Black

Sent: Thursday, 31 August 2017 12:24 PM

To: COC NSW; Enviro Sample NSW

Subject: 1 DAY TAT ADDITIONAL: Metals missed on sample

Importance: High

Hi Team

Unfortunately login missed doing metals on 559239 on sample Au22526. Can you please log this in as an additional job on 1 day TAT please?!

Andrew Black

Analytical Services Manager

Eurofins | mgt

Unit 7

7 Friesian Close

SANDGATE NSW 2304

AUSTRALIA

Phone: +61 2 9900 8490 Mobile: +61 410 220 750

Email : AndrewBlack@eurofins.com Website: environment.eurofins.com.au MF 1124 31/8 12:24 PM

Melbourne

Melbourne
3-5 Kingston Town Close
Oakleigh Vic 3166
Phone: +61 3 8564 5000
NATA # 1261
Site # 1254 & 14271

Unit F3, Building F 1/21 Smallwood Place 16 Mars Road Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Perth Z/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

ABN - 50 005 085 521

e.mail: EnviroSales@eurofins.com web: www.eurofins.com.au

Sample Receipt Advice

Company name: JBS & G Australia (NSW) P/L

Contact name: Scott Burrows

THREE SCHOOLS ESA Project name:

Project ID: 53033 COC number: Not provided

Turn around time: 1 Day

Aug 31, 2017 12:24 PM Date/Time received:

Eurofins | mgt reference: 561124

Sample information

- \mathbf{V} A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- \mathbf{V} Sample Temperature of a random sample selected from the batch as recorded by Eurofins | mgt Sample Receipt: 14 degrees Celsius.
- \mathbf{V} All samples have been received as described on the above COC.
- \square COC has been completed correctly.
- \square Attempt to chill was evident.
- \mathbf{V} Appropriately preserved sample containers have been used.
- \mathbf{V} All samples were received in good condition.
- \square Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- \mathbf{V} Appropriate sample containers have been used.
- \boxtimes Some samples have been subcontracted.
- Custody Seals intact (if used). N/A

Contact notes

If you have any questions with respect to these samples please contact:

Nibha Vaidya on Phone: +61 (2) 9900 8400 or by e.mail: NibhaVaidya@eurofins.com

Results will be delivered electronically via e.mail to Scott Burrows - SBurrows@jbsg.com.au.

JBS & G Australia (NSW) P/L Level 1, 50 Margaret St Sydney NSW 2000

Certificate of Analysis

NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention: Scott Burrows

Report 561124-S

Project name THREE SCHOOLS ESA

Project ID 53033

Received Date Aug 31, 2017

Client Sample ID Sample Matrix Eurofins mgt Sample No. Date Sampled				QA20170818 Soil M17-Au37877 Aug 18, 2017
Test/Reference	L	OR	Unit	
Heavy Metals				
Arsenic		2	mg/kg	3.9
Cadmium		0.4	mg/kg	< 0.4
Chromium		5	mg/kg	8.3
Copper		5	mg/kg	6.6
Lead		5	mg/kg	9.3
Mercury		0.1	mg/kg	< 0.1
Nickel		5	mg/kg	< 5
Zinc		5	mg/kg	19
% Moisture		1	%	11

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Metals M8	Melbourne	Aug 31, 2017	28 Days
- Method: LTM-MET-3030 by ICP-OES (hydride ICP-OES for Mercury)			
% Moisture	Melbourne	Aug 31, 2017	14 Day

- Method: LTM-GEN-7080 Moisture

ABN- 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au

Fax:

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794 Perth
2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
NATA # 1261
Site # 23736

Company Name: JBS & G Australia (NSW) P/L

Address: Level 1, 50 Margaret St

Sydney NSW 2000

Project Name: THREE SCHOOLS ESA

Project ID: 53033

Date Reported:Sep 01, 2017

 Order No.:
 Received:
 Aug 31, 2017 12:24 PM

 Report #:
 561124
 Due:
 Sep 1, 2017

 Phone:
 02 8245 0300
 Priority:
 1 Day

Contact Name: Scott Burrows

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

		Sai	mple Detail			Metals M8	Moisture Set
Melb	ourne Laborato	ry - NATA Site	# 1254 & 142	71		Χ	Χ
Sydr	ey Laboratory -	NATA Site # 1	8217				
Brist	oane Laboratory	/ - NATA Site #	20794				
Pertl	n Laboratory - N	IATA Site # 237	36				
Exte	rnal Laboratory						
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID		
1	QA20170818	Aug 18, 2017		Soil	M17-Au37877	Х	Х
Test	Counts					1	1

Eurofins | mgt 2-5 Kingston Town Close, Oakleigh, Victoria, Australia, 3166

ABN : 50 005 085 521 Telephone: +61 3 8564 5000 Report Number: 561124-S

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. All biota results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis
- 8. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

 mg/kg: milligrams per kilogram
 mg/L: milligrams per litre

 ug/L: micrograms per litre
 ppm: Parts per million

 ppb: Parts per billion
 %: Percentage

org/100mL: Organisms per 100 millilitres

NTU: Nephelometric Turbidity Units

MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody

SRA Sample Receipt Advice

QSM Quality Systems Manual ver 5.1 US Department of Defense
CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within

TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR: RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150%-Phenols & PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.1 where no positive PFAS results have been reported have been reviewed and no data was affected.

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported
 in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Eurofins | mgt 2-5 Kingston Town Close, Oakleigh, Victoria, Australia, 3166 ABN: 50 005 085 521 Telephone: +61 3 8564 5000

Quality Control Results

Test		Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code	
Method Blank									
Heavy Metals									
Arsenic			mg/kg	< 2			2	Pass	
Cadmium	Cadmium			< 0.4			0.4	Pass	
Chromium			mg/kg	< 5			5	Pass	
Copper			mg/kg	< 5			5	Pass	
Lead			mg/kg	< 5			5	Pass	
Mercury			mg/kg	< 0.1			0.1	Pass	
Nickel			mg/kg	< 5			5	Pass	
Zinc			mg/kg	< 5			5	Pass	
LCS - % Recovery			<i>y y</i>	-					
Heavy Metals									
Arsenic			%	105			80-120	Pass	
Cadmium			%	106			80-120	Pass	
Chromium			%	115			80-120	Pass	
Copper			%	119			80-120	Pass	
Lead			%	102			80-120	Pass	
Mercury			%	113			75-125	Pass	
Nickel			%	120			80-120	Pass	
Zinc			%	113			80-120	Pass	
		QA					Acceptance	Pass	Qualifying
Test	Lab Sample ID	Source	Units	Result 1			Limits	Limits	Code
Spike - % Recovery				D. audi 4					
Heavy Metals	M47 A 04050	NOD	0/	Result 1			75.405	D	
Arsenic	M17-Au31259	NCP	%	93			75-125	Pass	
Cadmium	M17-Au31259	NCP	%	95			75-125	Pass	
Chromium	M17-Au31259	NCP	%	103			75-125	Pass	
Copper	M17-Au31259	NCP	%	108			75-125	Pass	
Lead	M17-Au31259	NCP	%	106			75-125	Pass	
Mercury	M17-Au31259	NCP	%	118			70-130	Pass	
Nickel	M17-Au31259	NCP	%	107			75-125	Pass	
Zinc	M17-Au31259	NCP	%	150			75-125	Fail	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Heavy Metals	1			Result 1	Result 2	RPD			
Arsenic	M17-Au31259	NCP	mg/kg	3.5	3.5	1.0	30%	Pass	
Cadmium	M17-Au31259	NCP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	M17-Au31259	NCP	mg/kg	15	15	2.0	30%	Pass	
Copper	M17-Au31259	NCP	mg/kg	17	17	1.0	30%	Pass	
Lead	M17-Au31259	NCP	mg/kg	35	35	1.0	30%	Pass	
Mercury	M17-Au31259	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Nickel	M17-Au31259	NCP	mg/kg	8.3	8.4	<1	30%	Pass	
Zinc	M17-Au31259	NCP	mg/kg	130	140	1.0	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
% Moisture	M17-Au37061	NCP	%	15	14	4.0	30%	Pass	

Comments

Sample Integrity

Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Authorised By

Nibha Vaidya Analytical Services Manager
Alex Petridis Senior Analyst-Metal (VIC)
Huong Le Senior Analyst-Inorganic (VIC)

Glenn Jackson

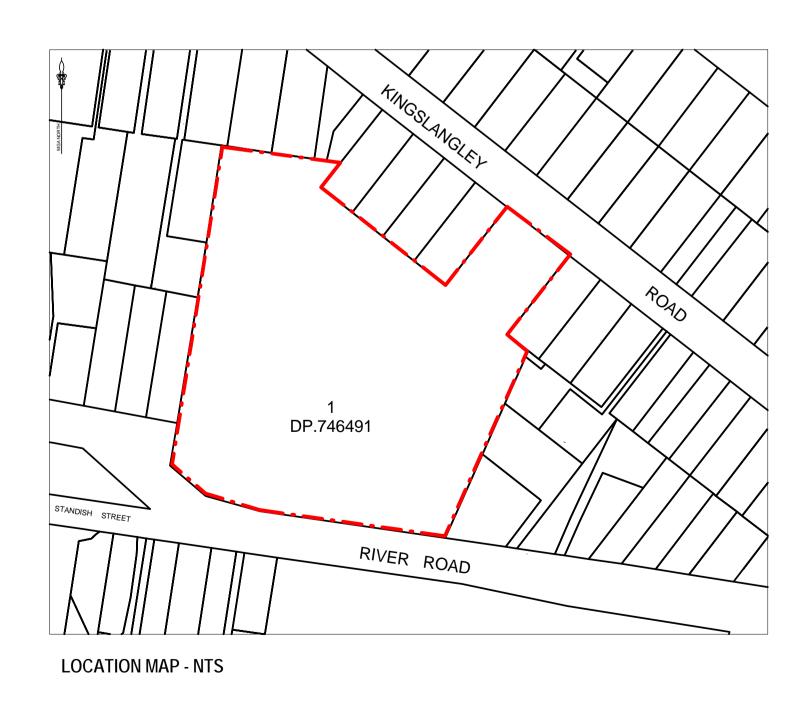
National Operations Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

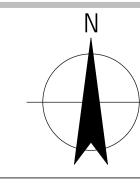
Eurofins, Img shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report, In on case shall Eurofins I mg be liable for consequential claims, but not limited to, lost profits, damages for relative to meet decidines and lost production arising from this report. This document shall be reported.


Appendix L Proposed Development Plans

NSW DEPARTMENT OF EDUCATION GREENWICH PUBLIC SCHOOL REDEVELOPMENT

32 KINGSLANGLEY ROAD, GREENWICH

		554		5.		
DRAWING INDEX - DA						
PROJECT No.	LOCATION CODE	STATUS	SHEET	TITLE		
1. ARCHITECTURAL - DA	•					
21-26108-28	GK	DA	DA-AR-0000	COVER SHEET, LOCALITY PLAN & DRAWING LIST		
21-26108-28	GK	DA	DA-AR-0011	EXISTING SITE CONDITIONS - SITE ANALYSIS		
21-26108-28	GK	DA	DA-AR-0050	NOTIFICATION DRAWING		
21-26108-28	GK	DA	DA-AR-0100	EXISTING SITE CONDITIONS		
21-26108-28	GK	DA	DA-AR-0300	SITE DEMOLITION PLAN		
21-26108-28	GK	DA	DA-AR-0302	PROPOSED SITE PLAN		
21-26108-28	GK	DA	DA-AR-0500	PHOTOMONTAGE		
21-26108-28	GK	DA	DA-AR-1010	SITE ELEVATIONS STREETSCAPE		
21-26108-28	GK	DA	DA-AR-2000	GENERAL ARRANGEMENT - LEVEL 1		
21-26108-28	GK	DA	DA-AR-2001	GENERAL ARRANGEMENT - LEVEL 2		
21-26108-28	GK	DA	DA-AR-2002	GENERAL ARRANGEMENT - LEVEL 3		
21-26108-28	GK	DA	DA-AR-2004	GENERAL ARRANGEMENT - ROOF		
21-26108-28	GK	DA	DA-AR-3000	NORTH & SOUTH ELEVATIONS		
21-26108-28	GK	DA	DA-AR-3001	EAST AND WEST ELEVATIONS		
21-26108-28	GK	DA	DA-AR-3100	BUILDING SECTION		
21-26108-28	GK	DA	DA-AR-5000	BUILDING FABRIC FINISHES SCHEDULE		
21-26108-28	GK	DA	DA-AR-9000	SITE SHADOW DIAGRAMS		
2. LANDSCAPE - DA						
21-26108-28	GK	DA	DA-LA-0001	LANDSCAPE GENERAL ARRANGEMENT PLAN		
3.CIVIL - DA						
21-26108-28	GK	DA	DA-CI-1010	STORM WATER PLAN		
21-26108-28	GK	DA	DA-CI-1015	STORM WATER DETAILS		
21-26108-28	GK	DA	DA-CI-1030	EARTHWORKS PLAN		
21-26108-28	GK	DA	DA-CI-1035	EROSION AND SEDIMENT CONTROL PLAN		



PRELIMINARY

A ISSUED FOR REVIEW

AA PM MD 28.08.2017

No Revision Note: * indicates signatures on original issue of drawing or last revision of drawing Drawn Manager Director Date

GHDWOODHEAD

Level 15, 133 Castlereagh St Sydney NSW 2000 Australia

T 61 2 9239 7100

F 61 2 9239 7199

E sydmail@ghd.com

W www.ghd.com

Conditions of Use.
This document may only be used by GHD's client (and any other person who GHD has agreed can use this document) for the purpose for which it was prepared and must not be used by any other person or for any other

Drawn A. ARIMADO

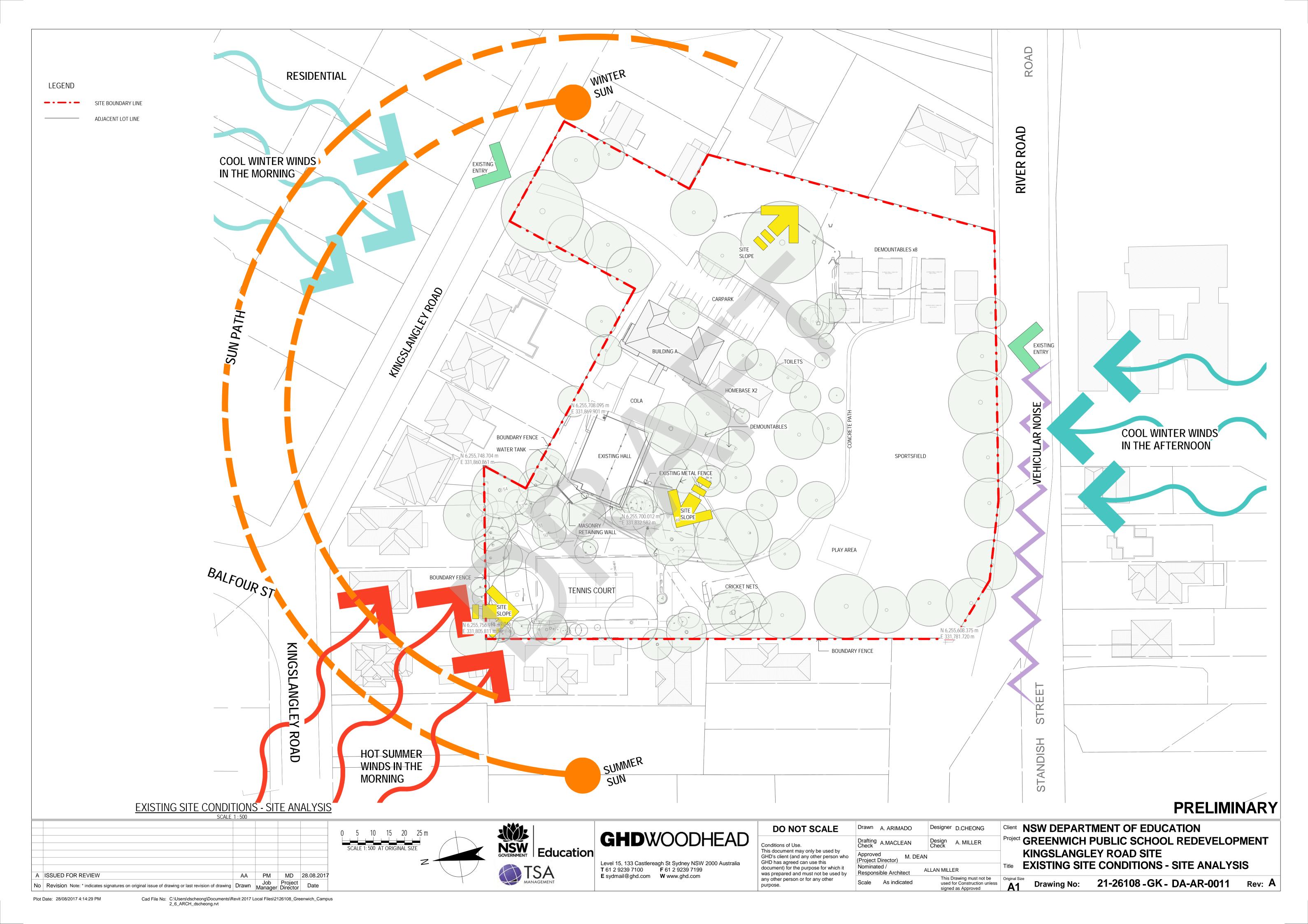
Designer D.CHEONG

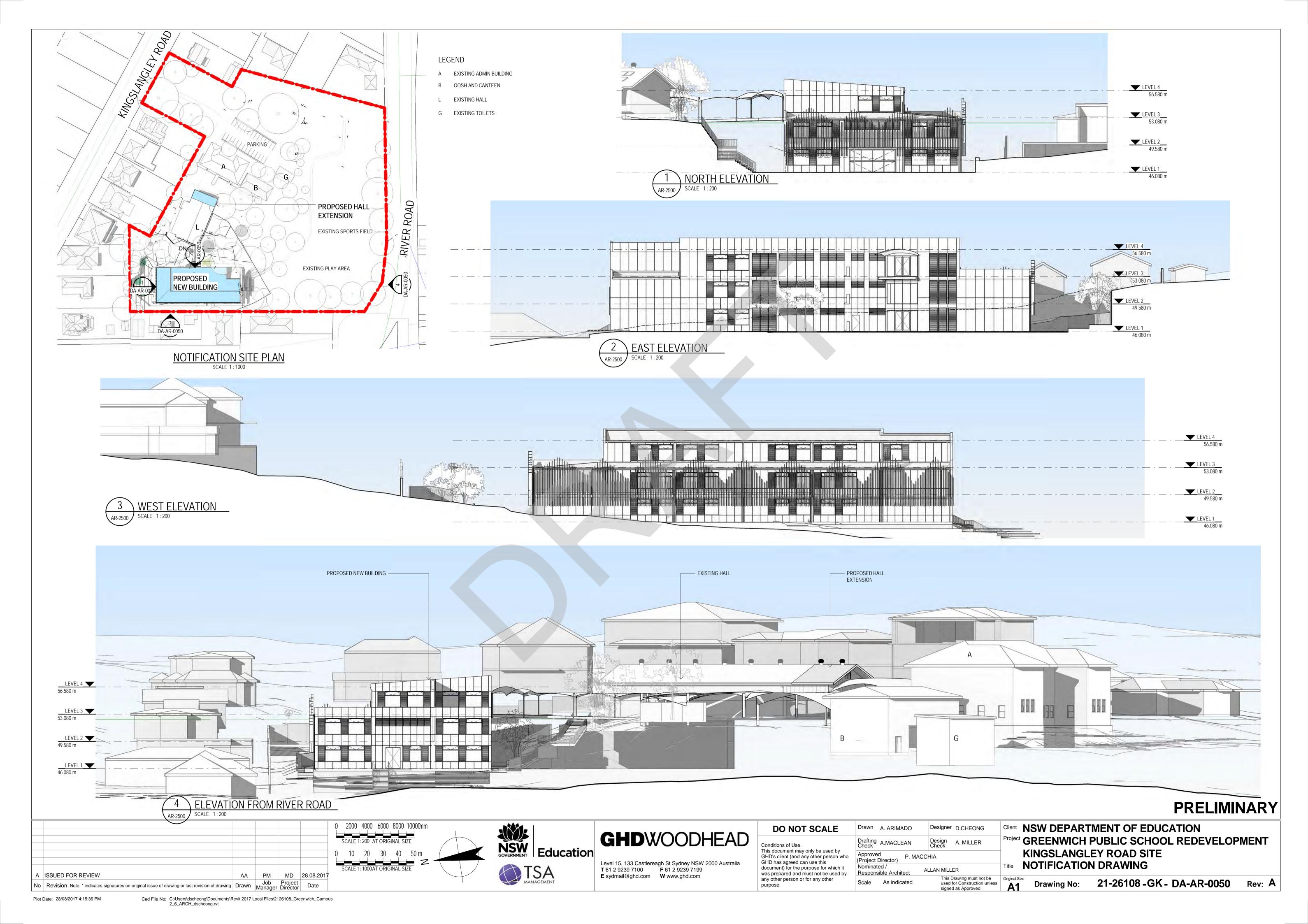
Drafting A.MACLEAN
Check

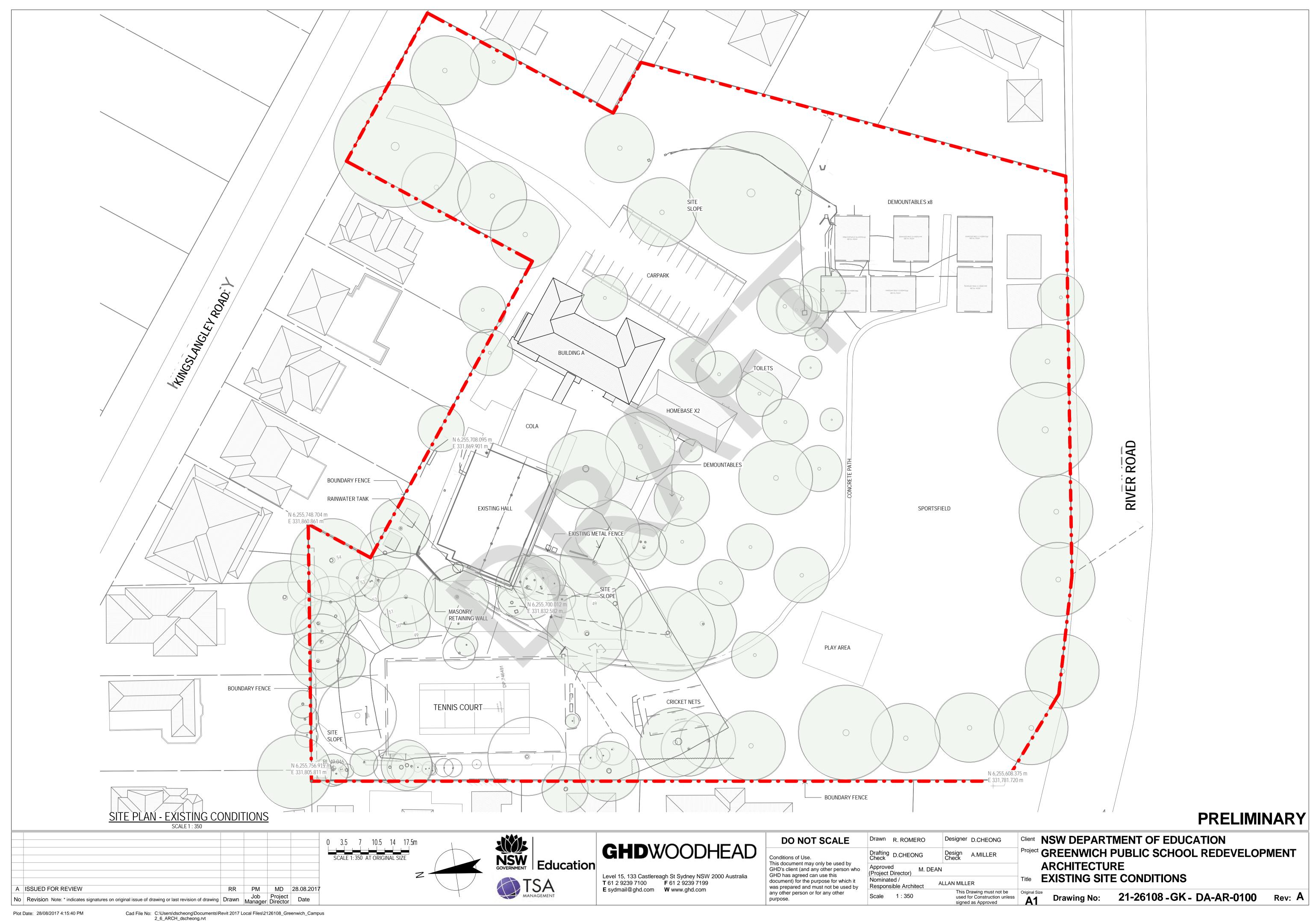
Approved
(Project Director)

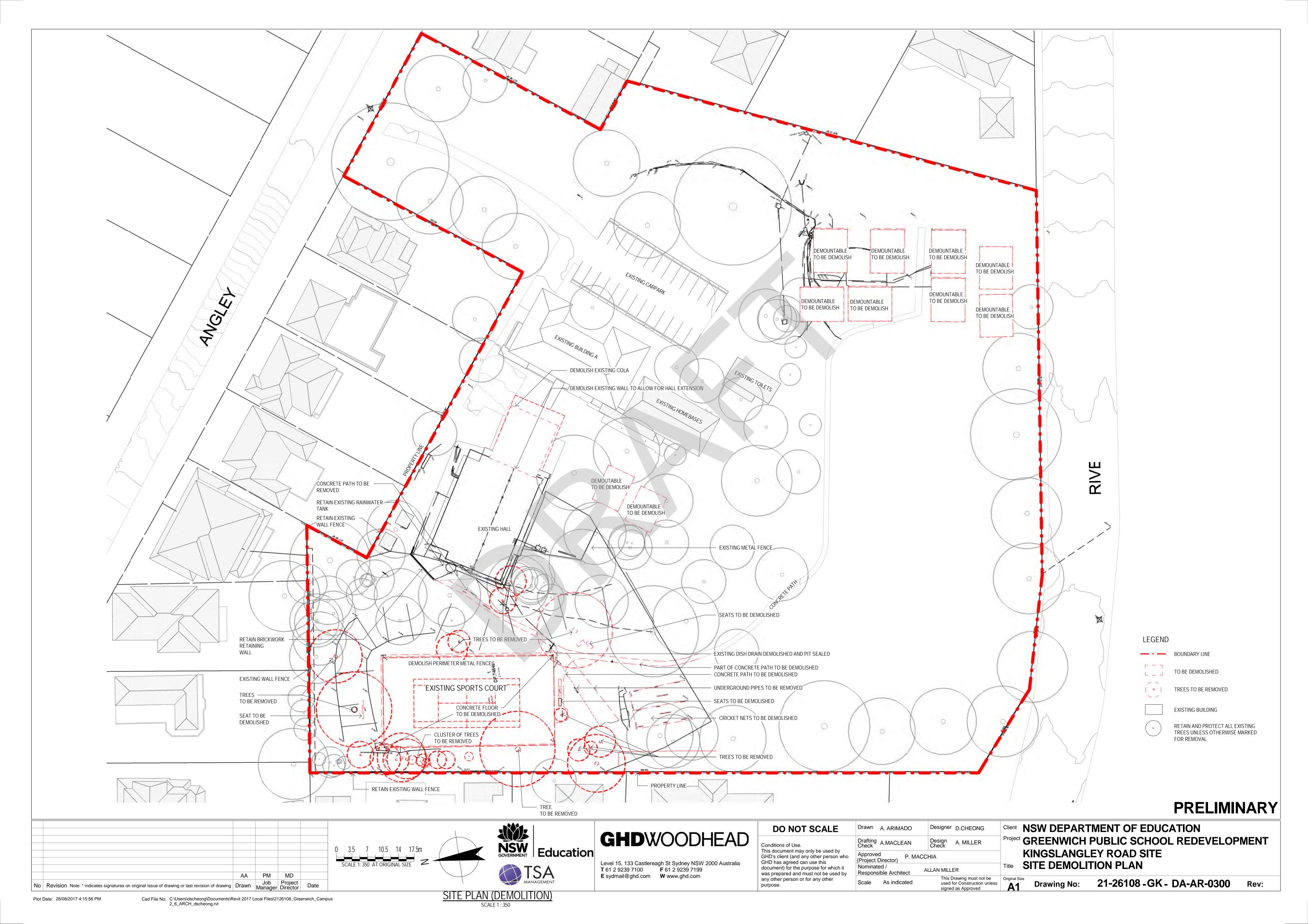
Nominated /

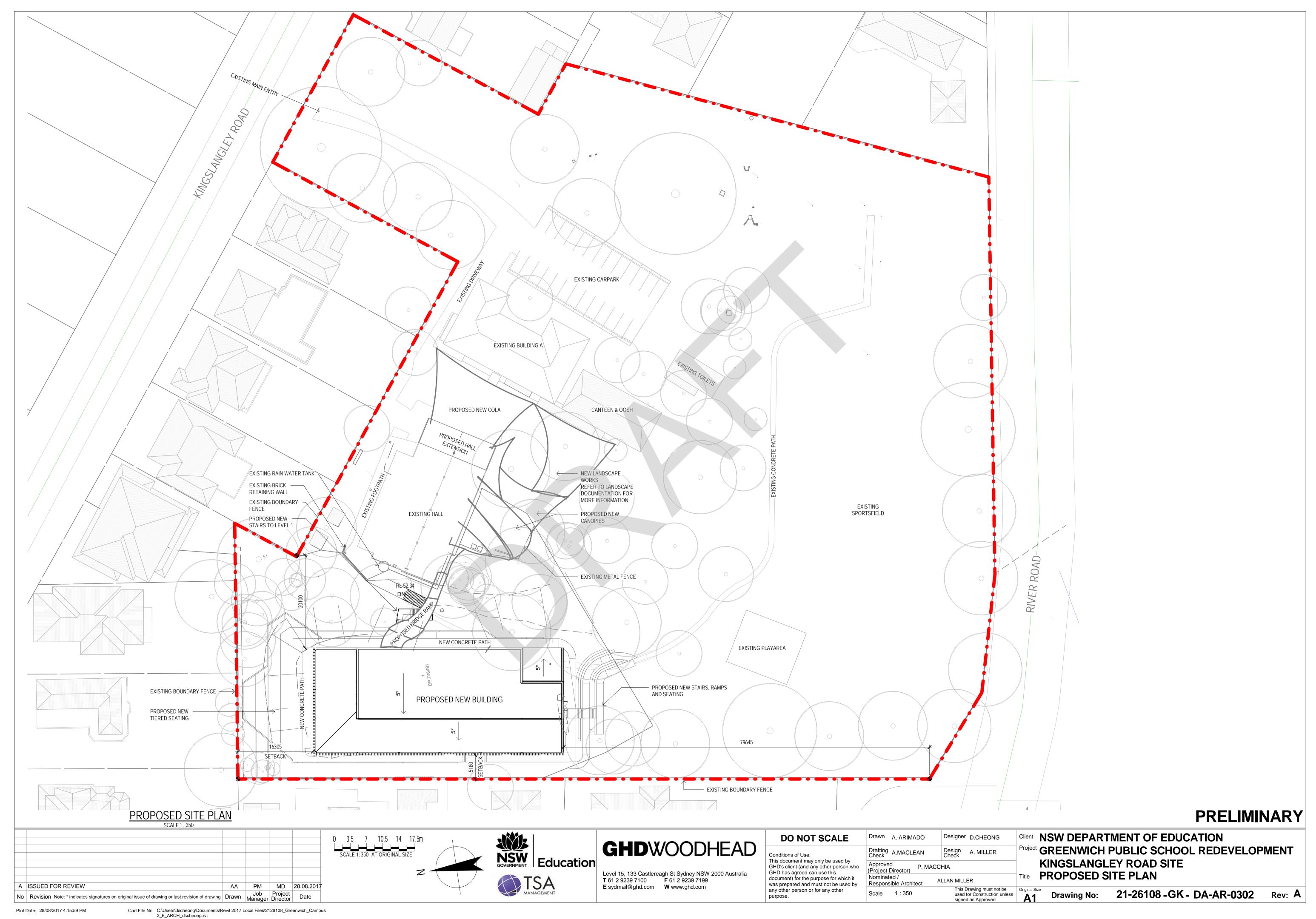
Design A. MILLER

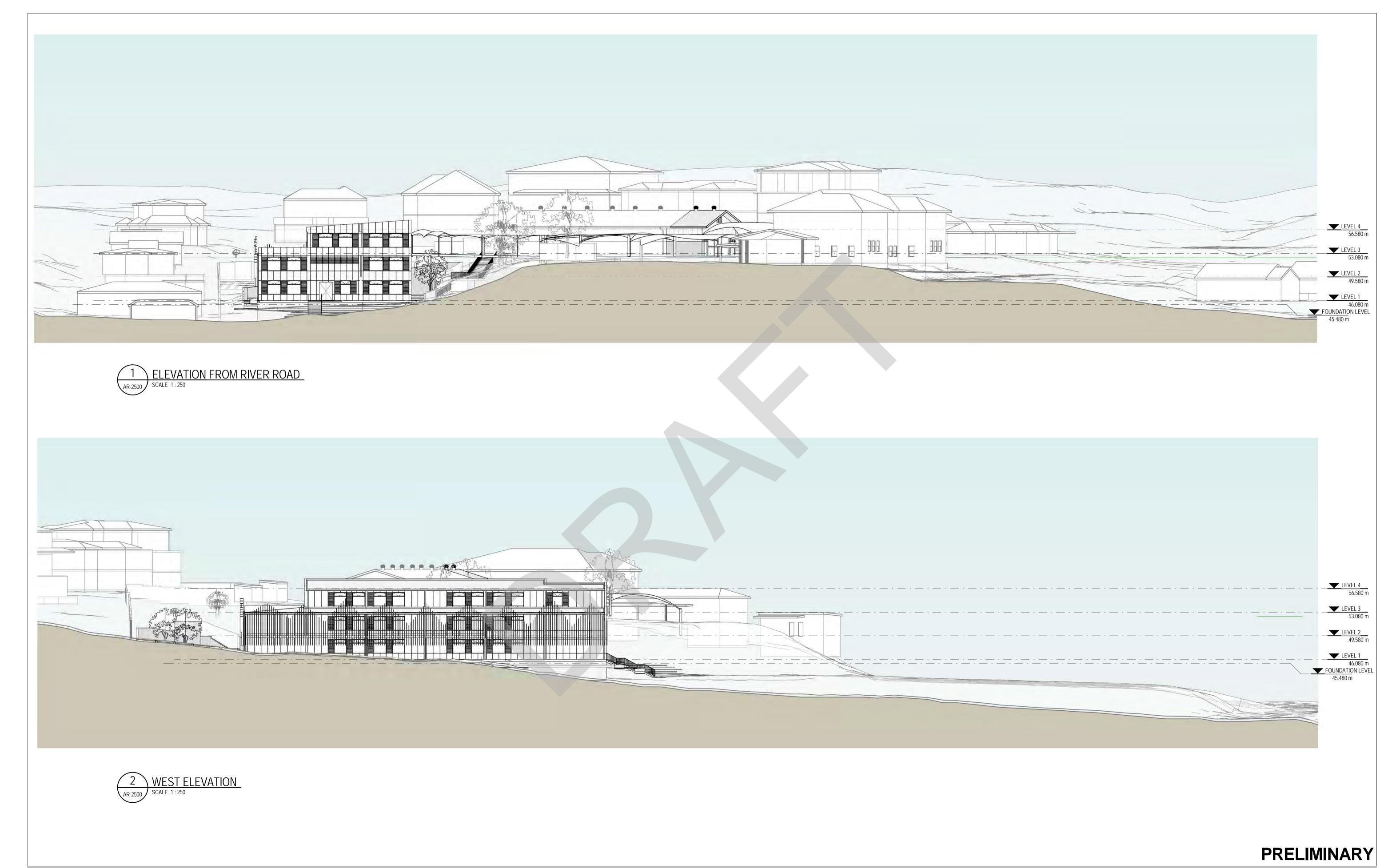

ALAN MILLER


used for Construction unless


Client NSW DEPARTMENT OF EDUCATION


Project GREENWICH PUBLIC SCHOOL REDEVELOPMENT KINGSLANGLEY ROAD SITE


Title COVER SHEET, LOCALITY PLAN & DRAWING LIST



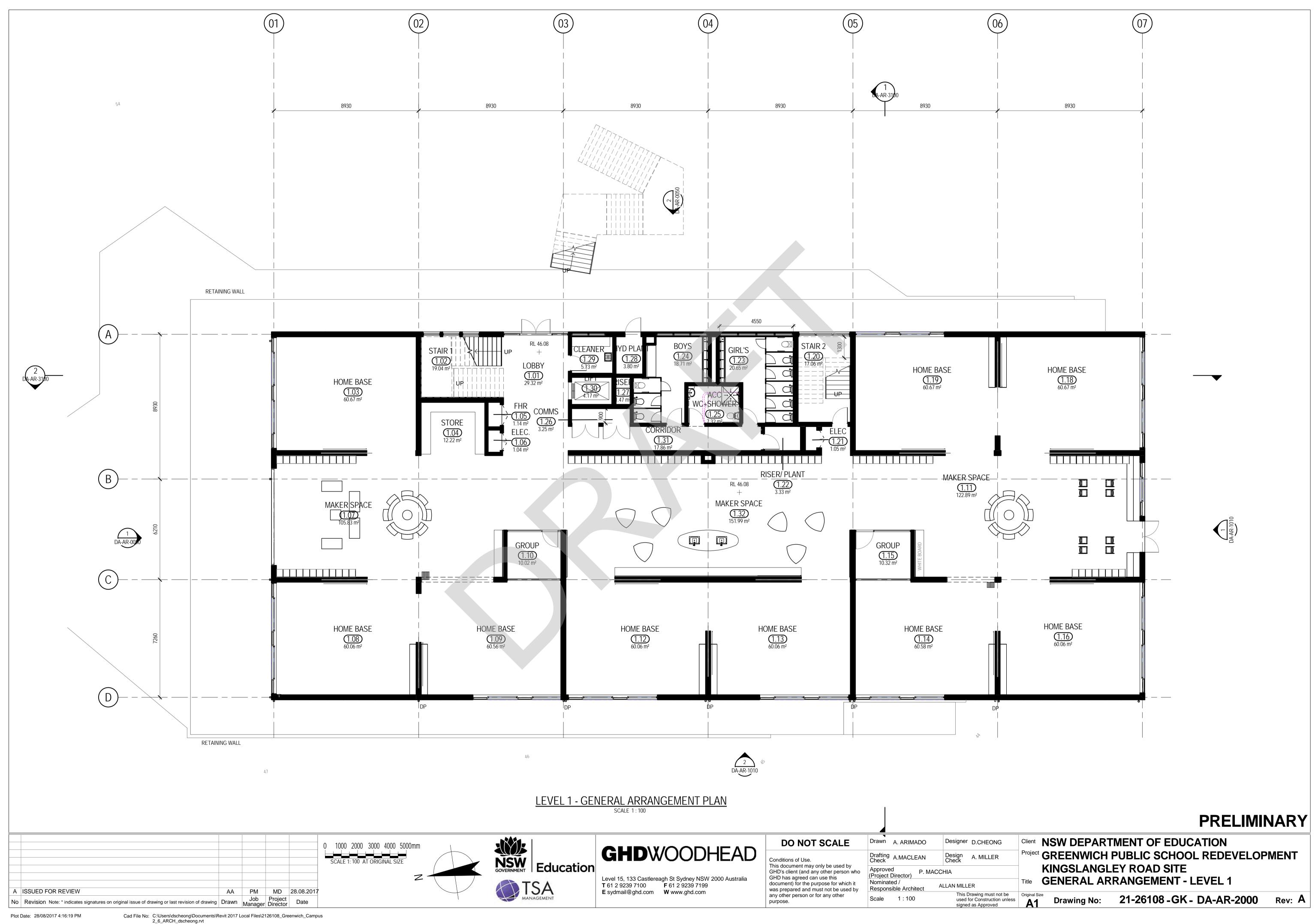
A ISSUED FOR REVIEW MD 28.08.2017 No Revision Note: * indicates signatures on original issue of drawing or last revision of drawing Drawn Job Manager Director

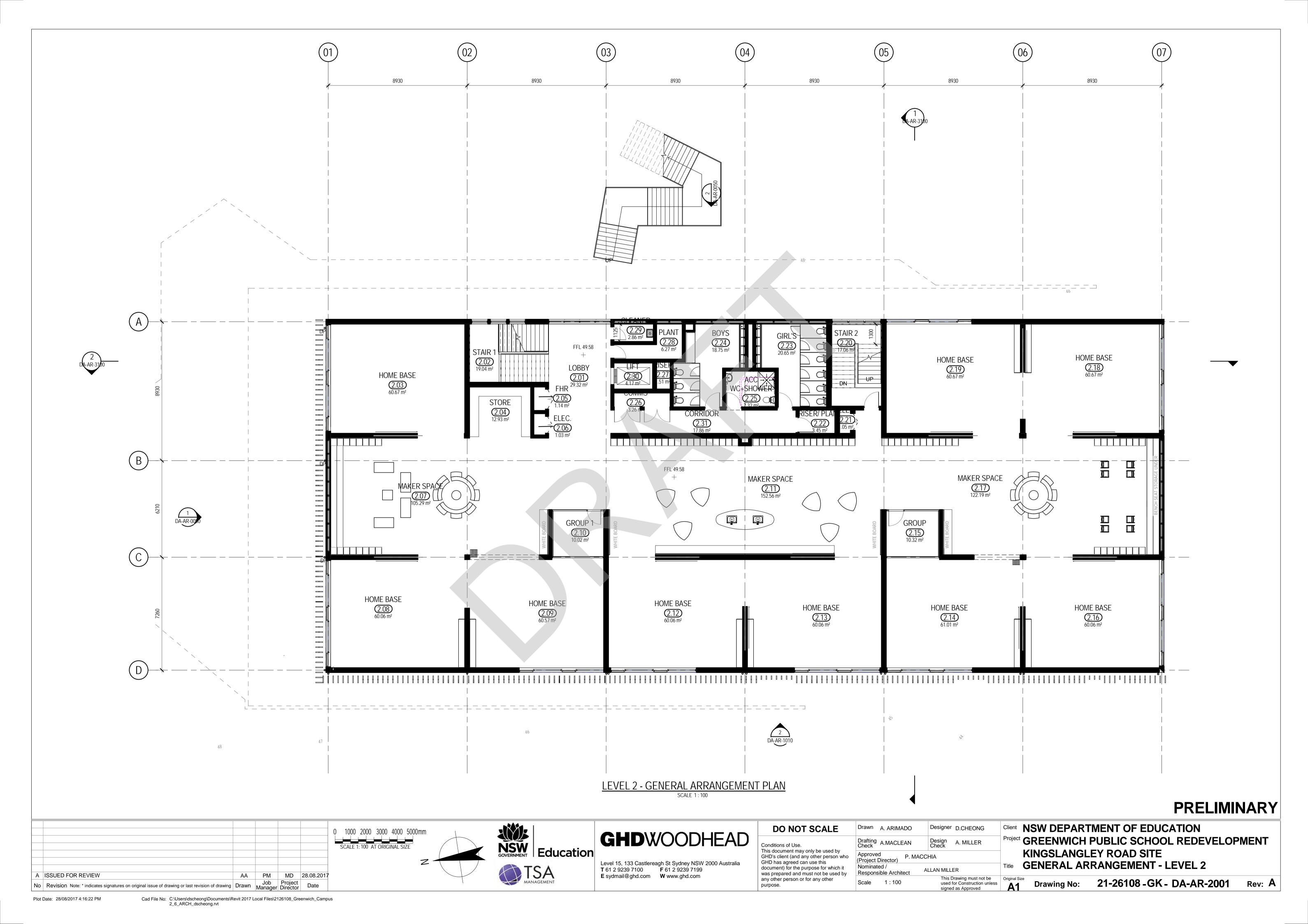
NSW Education

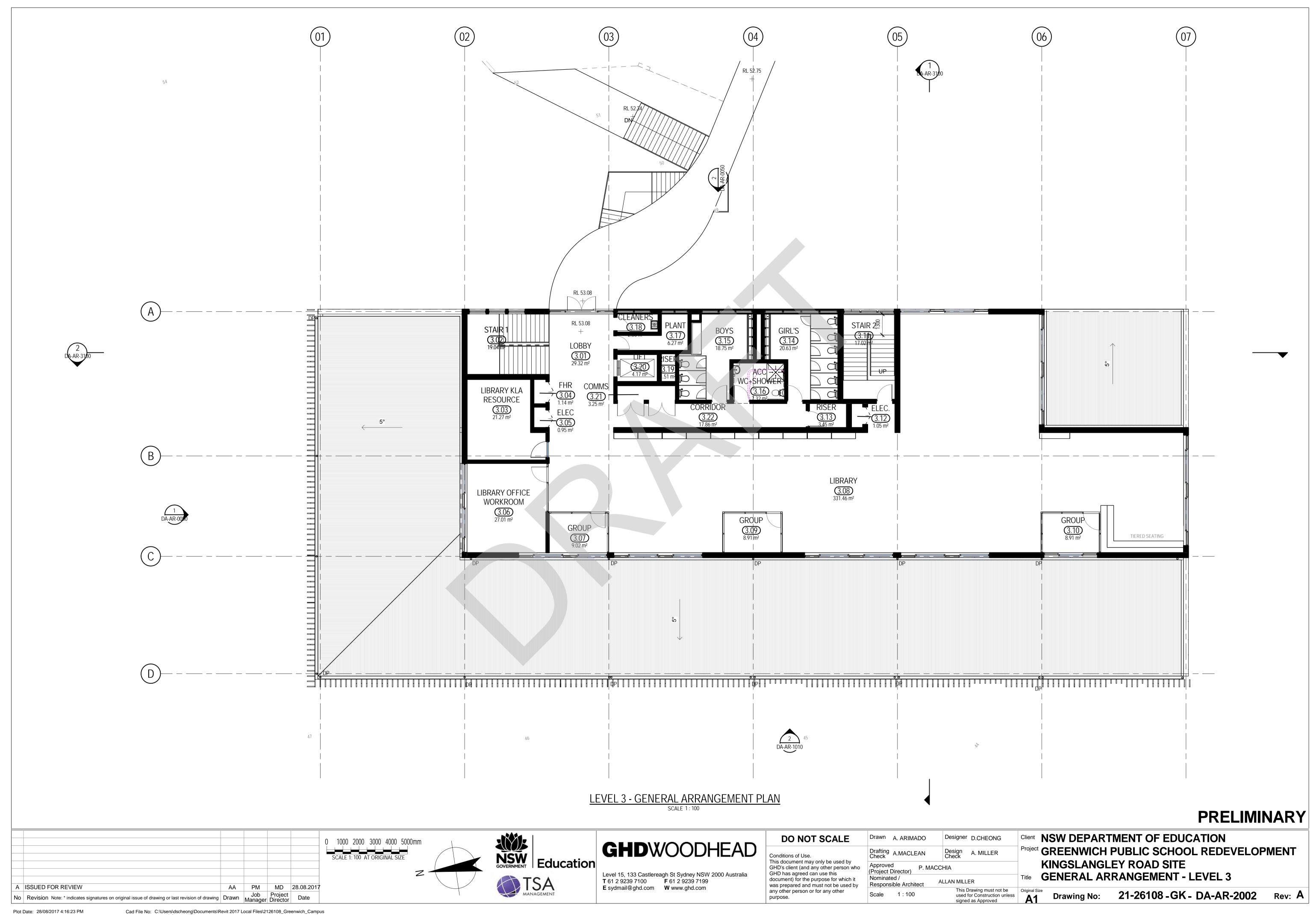
0 2500 5000 7500 10000 12500mm

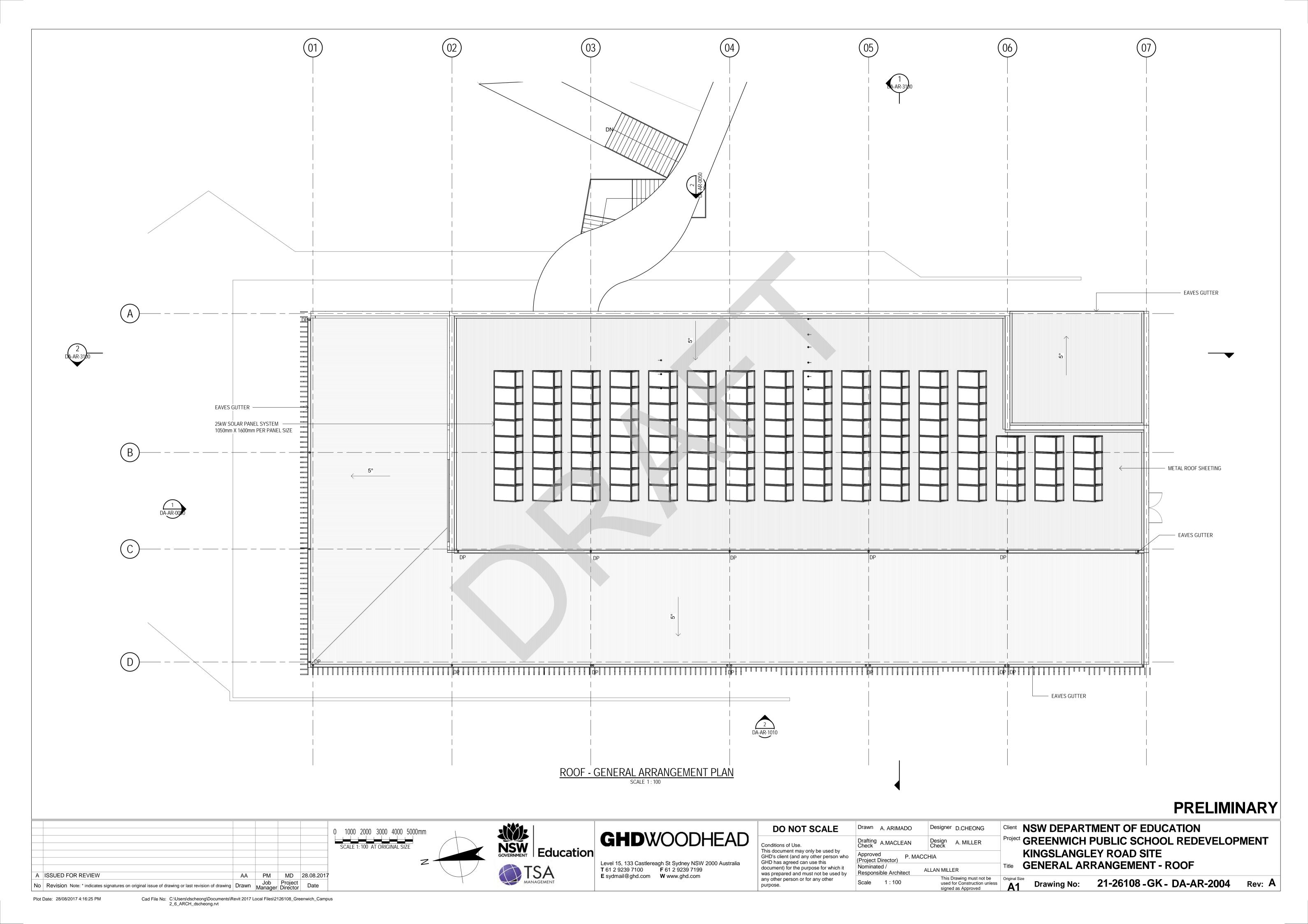
GHDWOODHEAD

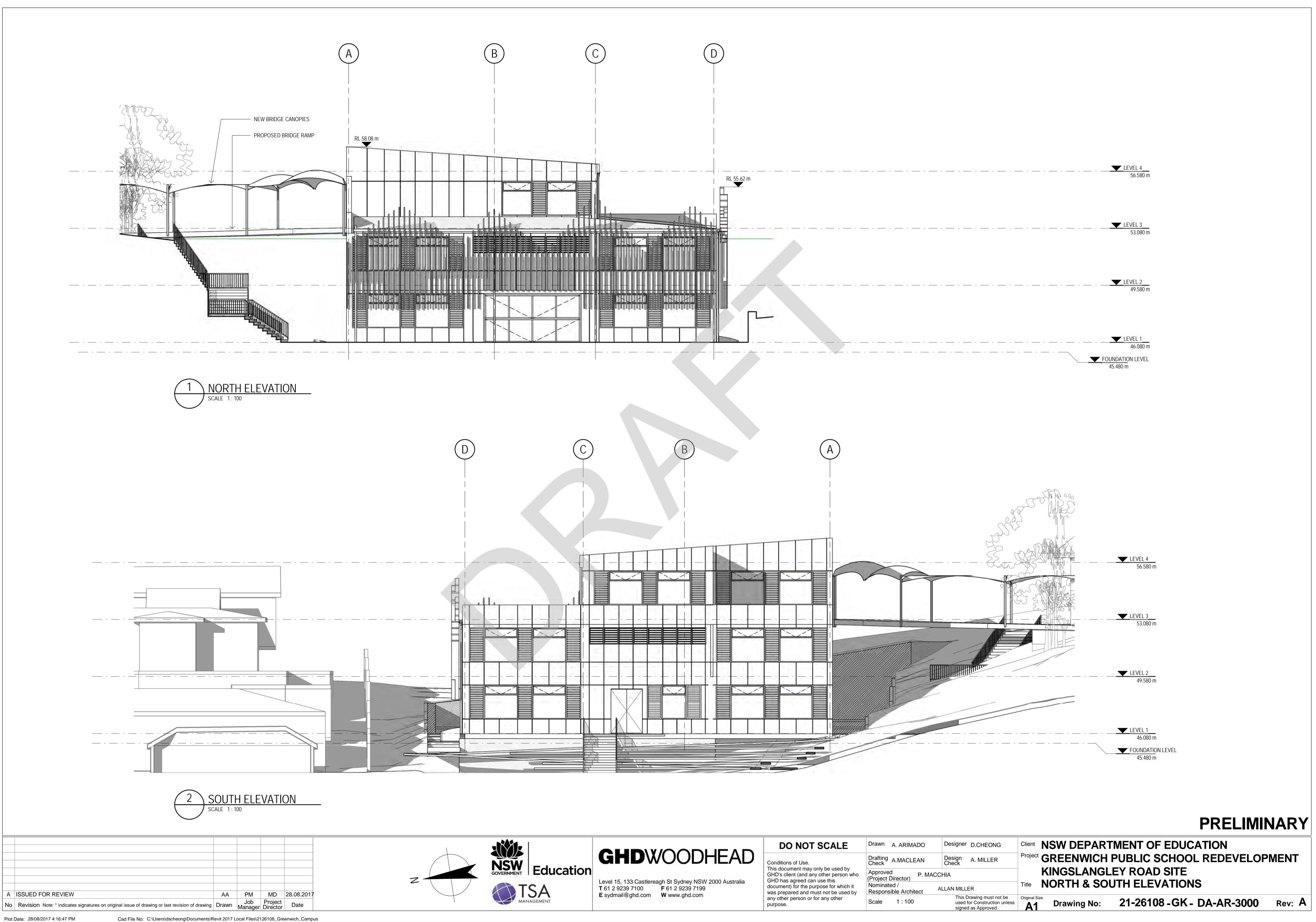
Level 15, 133 Castlereagh St Sydney NSW 2000 Australia **T** 61 2 9239 7100 **F** 61 2 9239 7199 **E** sydmail@ghd.com **W** www.ghd.com

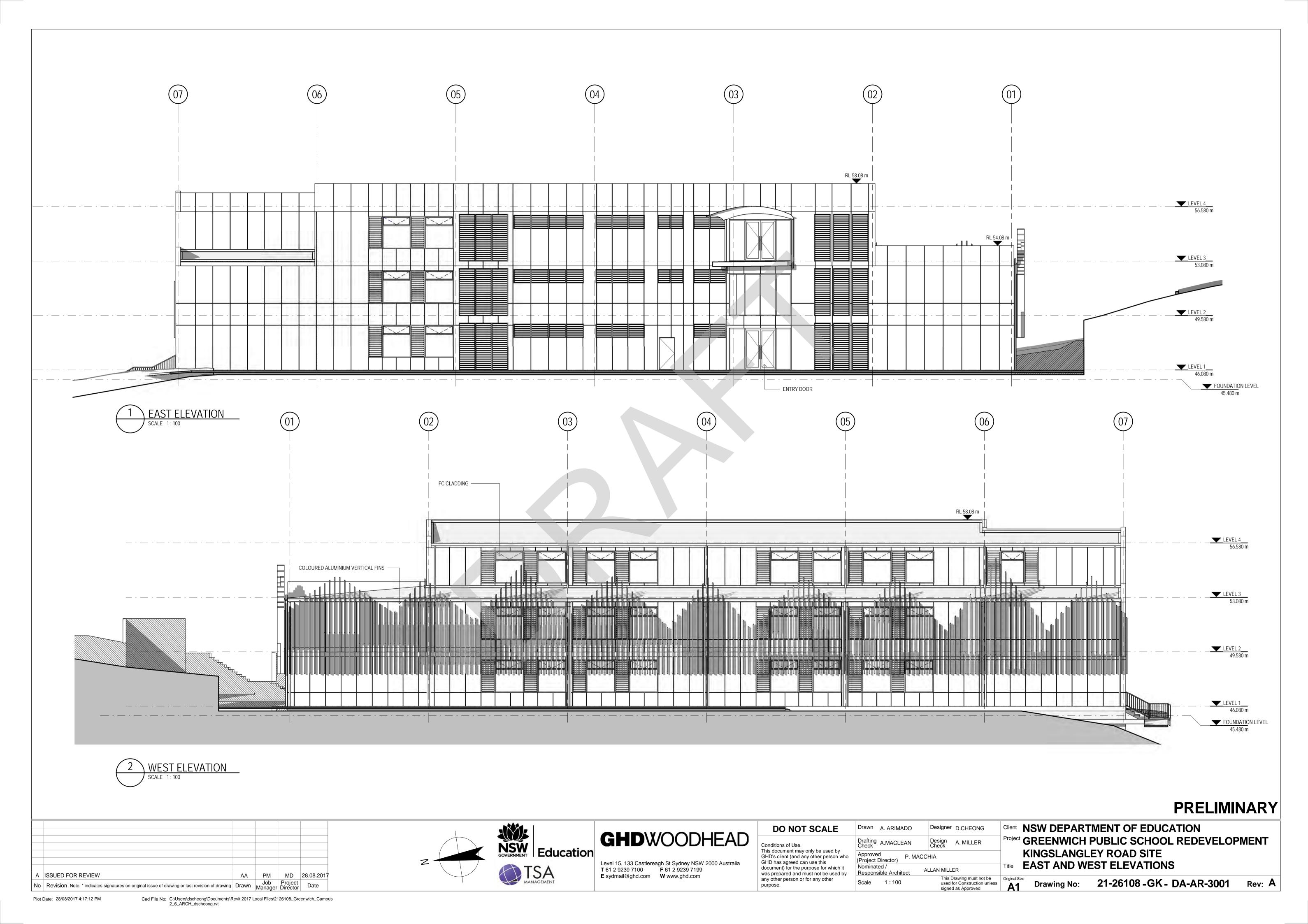

DO NOT SCALE Conditions of Use.
This document may only be used by GHD's client (and any other person who GHD has agreed can use this document) for the purpose for which it was prepared and must not be used by any other person or for any other

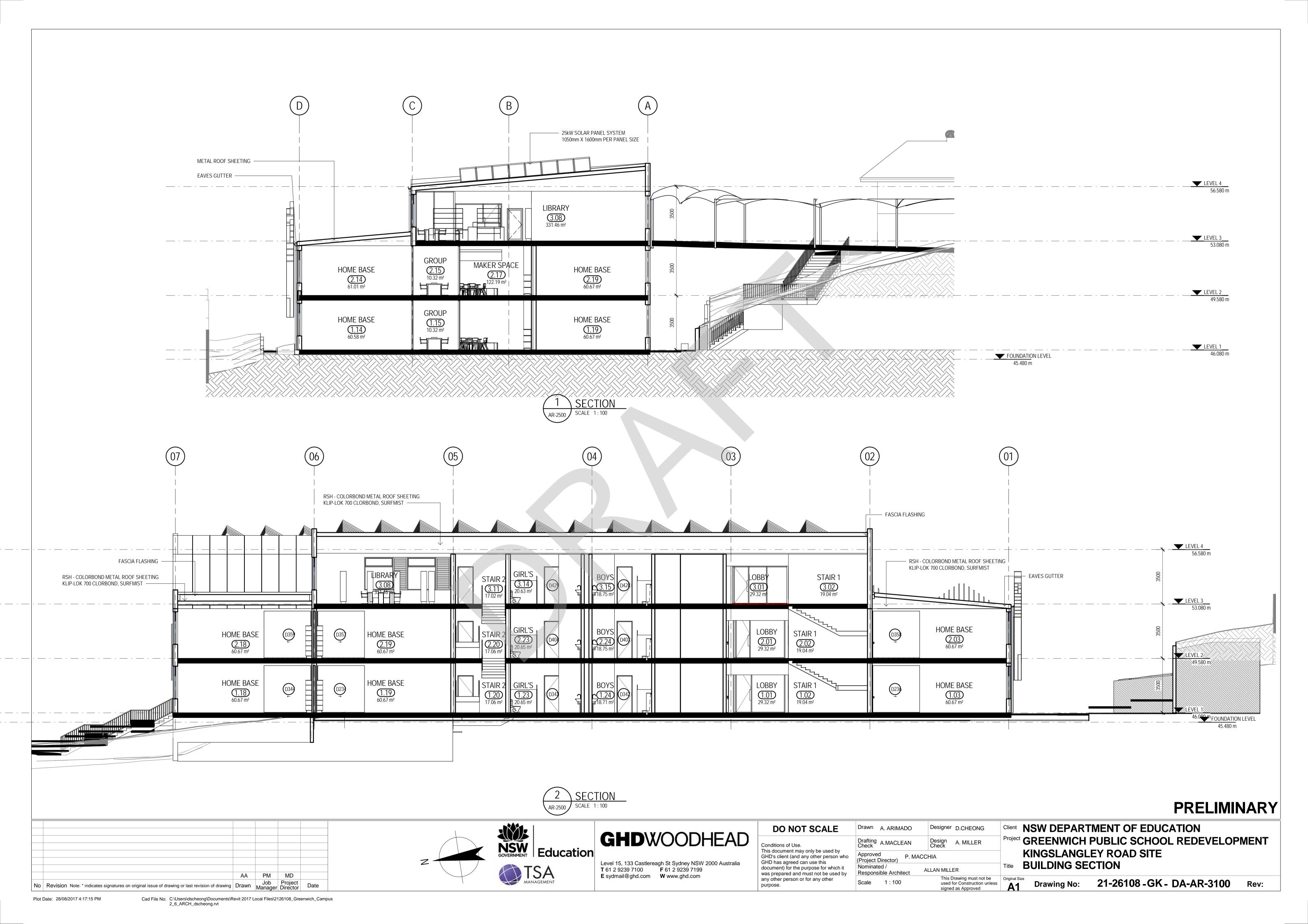

Drawn A. ARIMADO Designer D.CHEONG Drafting A.MACLEAN Design A. MILLER Check Approved (Project Director) P. MACCHIA Nominated / ALLAN MILLER Responsible Architect This Drawing must not be used for Construction unless

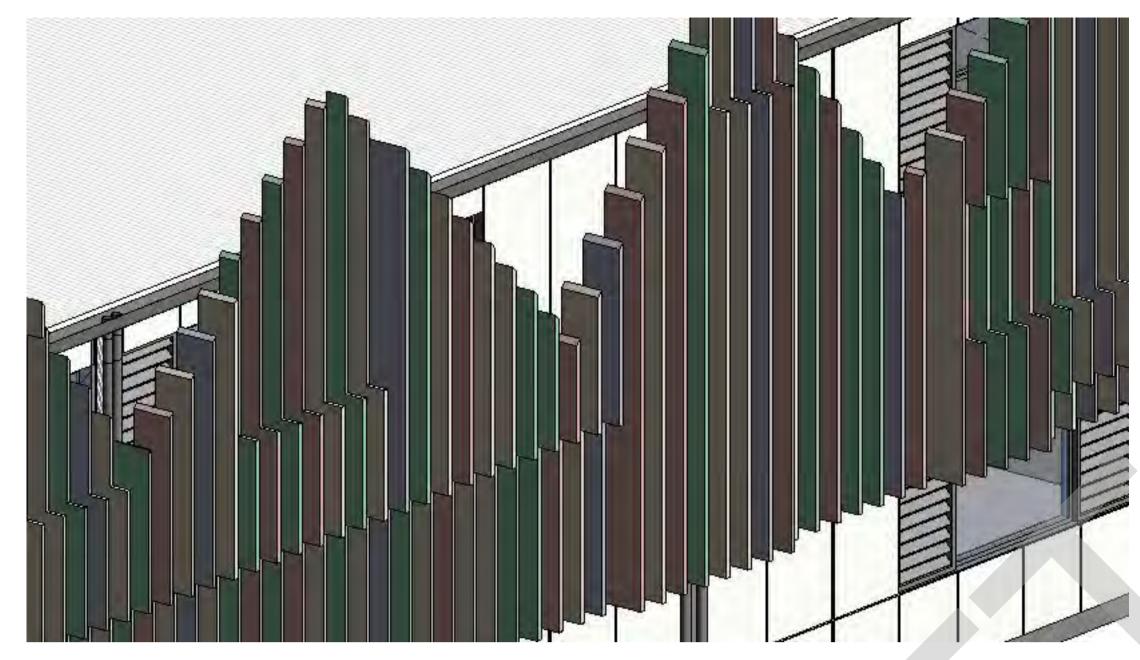

Scale 1:250

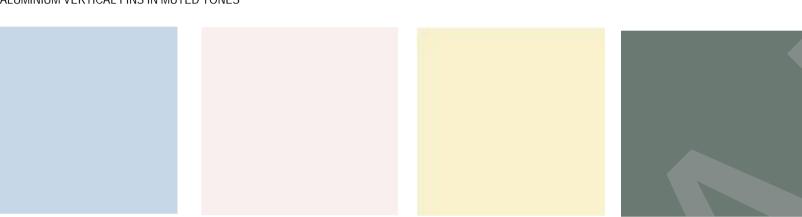

Client NSW DEPARTMENT OF EDUCATION Project GREENWICH PUBLIC SCHOOL REDEVELOPMENT KINGSLANGLEY ROAD SITE Title SITE ELEVATIONS STREETSCAPE


Drawing No: 21-26108 - GK - DA-AR-1010 Rev: A

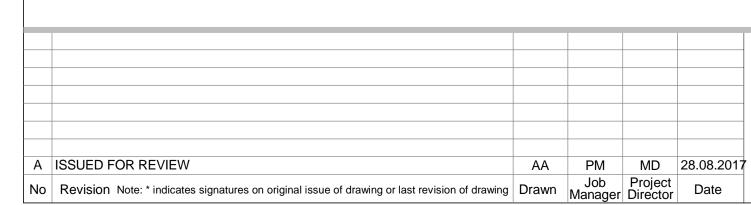





EXTERIOR WALL FINISHES


FC CLADDING PANELS - OFF WHITE

ROOFING



ALUMINIUM VERTICAL FINS IN MUTED TONES

PRELIMINARY

Rev: A

GHDWOODHEAD

Level 15, 133 Castlereagh St Sydney NSW 2000 Australia
T 61 2 9239 7100
F 61 2 9239 7199
E sydmail@ghd.com
W www.ghd.com


Conditions of Use.
This document may only be used by
GHD's client (and any other person who
GHD has agreed can use this
document) for the purpose for which it
was prepared and must not be used by
any other person or for any other
purpose.

DO NOT SCALE

Drawn A. ARIMADO	Designer D.CHEONG
Drafting A.MACLEAN	Design A. MILLER
Approved P. MACC (Project Director)	HIA
Nominated / Responsible Architect	LLAN MILLER

Scale 1:100

ent	NSW DEPARTMENT OF EDUCATION
oject	GREENWICH PUBLIC SCHOOL REDEVELOPMENT
	KINGSLANGLEY ROAD SITE
le	BUILDING FABRIC FINISHES SCHEDULE

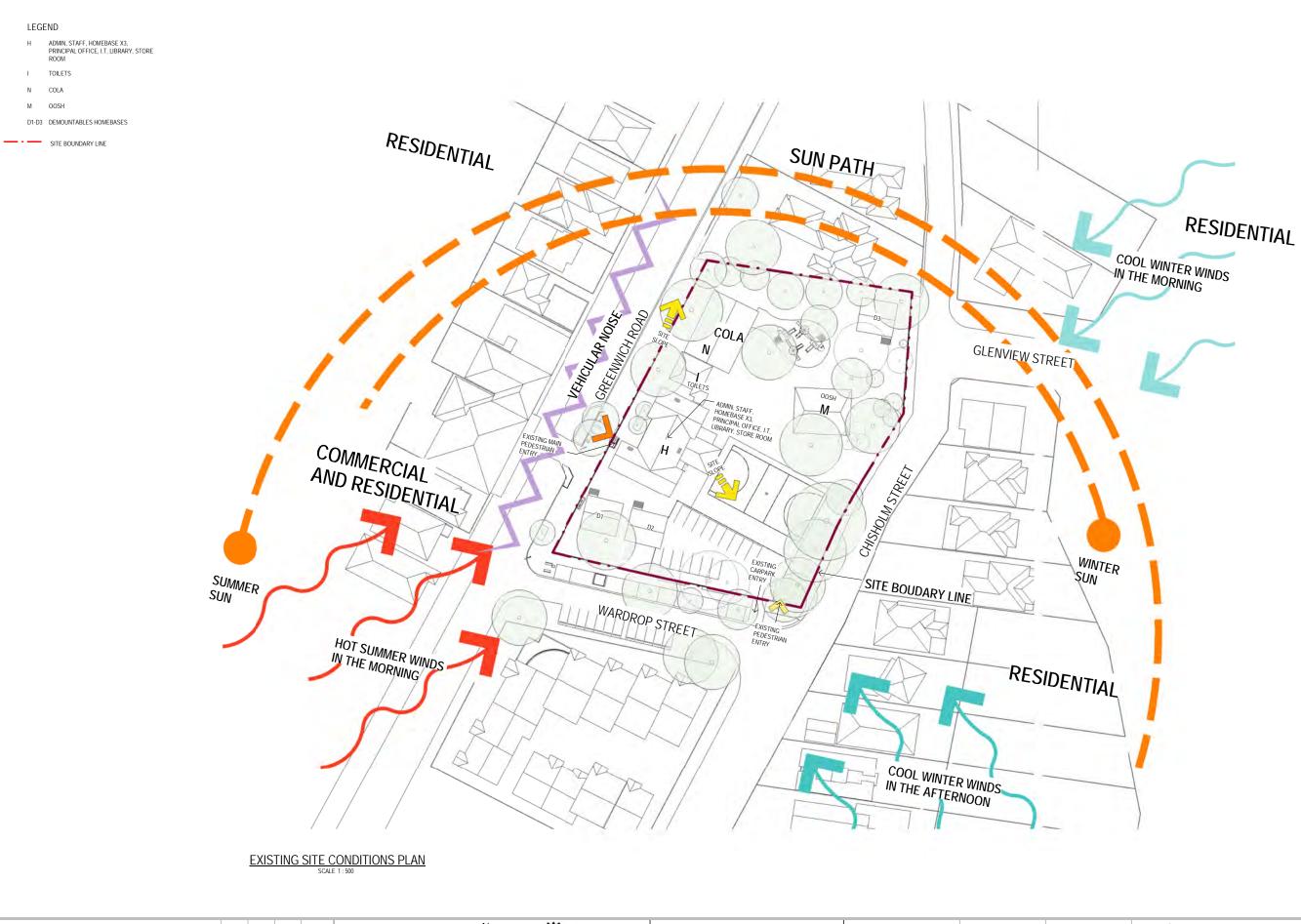
NSW DEPARTMENT OF EDUCATION GREENWICH PUBLIC SCHOOL REDEVELOPMENT

70A GREENWICH ROAD, GREENWICH

PRELIMINARY

GHDWOODHEAD

Level 15, 133 Castlereagh St Sydney NSW 2000 Australia T 61 2 9239 7100 F 61 2 9239 7199 E sydmail@ghd.com W www.ghd.com


Conditions of Use. This document may only be used by GHD's client (and any other person who GHD has agreed can use this document) for the purpose for which it

DO NOT SCALE

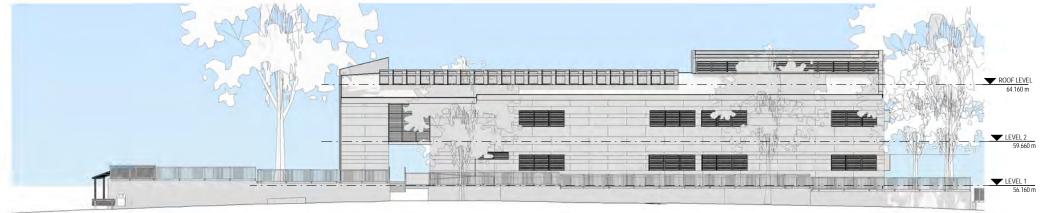
Drawn L.LANEGRA	Designer D.CHEONG	Client	N
Drafting D.CHEONG	Design A.MILLER	Project	G
Approved M.WARRI (Project Director)	EN		G
Nominated / A.MIL Responsible Architect	LER	Title	C

ISW DEPARTMENT OF EDUCATION REENWICH PUBLIC SCHOOL REDEVELOPMENT **GREENWICH ROAD CAMPUS** COVER SHEET AND LIST OF DRAWINGS

Drawing No: 21-26108 - GR - DA-AR-0000 Rev: A

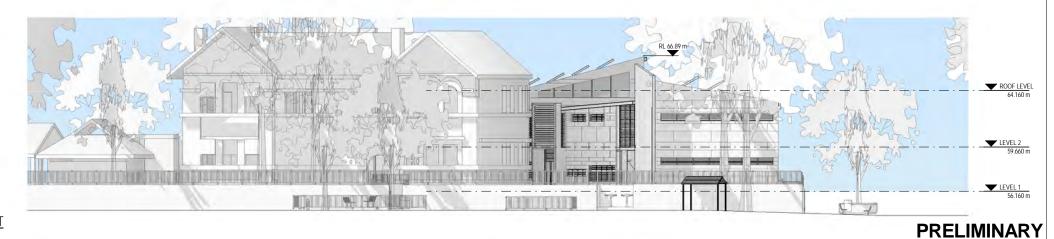
PRELIMINARY

NSW GOVERNMENT Education Client NSW DEPARTMENT OF EDUCATION DO NOT SCALE Drawn L.LANEGRA Designer D.CHEONG **GHD**WOODHEAD Project GREENWICH PUBLIC SCHOOL REDEVELOPMENT Drafting D.CHEONG Design A.MILLER onditions of Use. Conditions of Use.
This document may only be used by
GHD's client (and any other person who
GHD has agreed can use this
document) for the purpose for which it
was prepared and must not be used by
any other person or for any other
purpose. **GREENWICH ROAD CAMPUS** Approved M.WARREN (Project Director) Title EXISTING SITE CONDITIONS - SITE ANALYSIS TSA Nominated / A.MILLER Responsible Architect L.L P.M M.W 23.08.17 Scale 1:500 A1 Drawing No: 21-26108 - GR - DA-AR-0011 Rev: A No Revision Note: * indicates signatures on original issue of drawing or last revision of drawing Drawn Job Manager Director Date


ELEVATION FROM WARDROPT ST

LEGEND

- ADMIN, STAFF, HOMEBASE X3, PRINCIPAL OFFICE, I.T, LIBRARY, STORE ROOM
- I TOILETS
- N COLA
- M OOSH
- D1-D3 DEMOUNTABLES HOMEBASES



NORTH FACING ELEVATION

ELEVATION FROM CHISHOLM ST - FACING EAST

ELEVATION FROM GREENWICH ROAD - FACING WEST

SCALE 1:15

A ISSUED FOR REVIEW

Revision Note: * indicates signatures on original issue of drawing or last revision of drawing Drawn

0 1500 3000 4500 6000 7500mm SCALE 1: 150 AT ORIGINAL SIZE

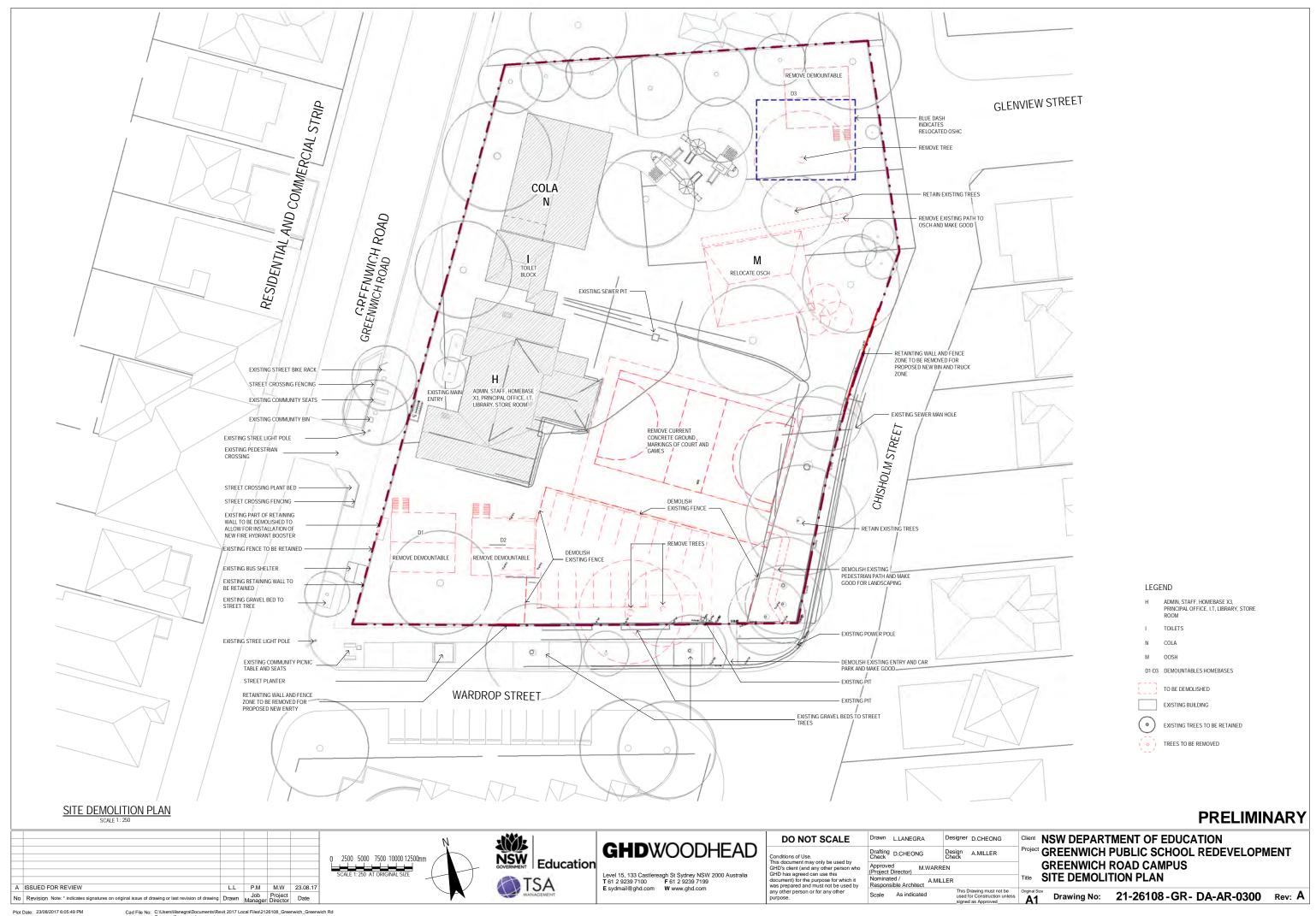
GHDWOODHEAD

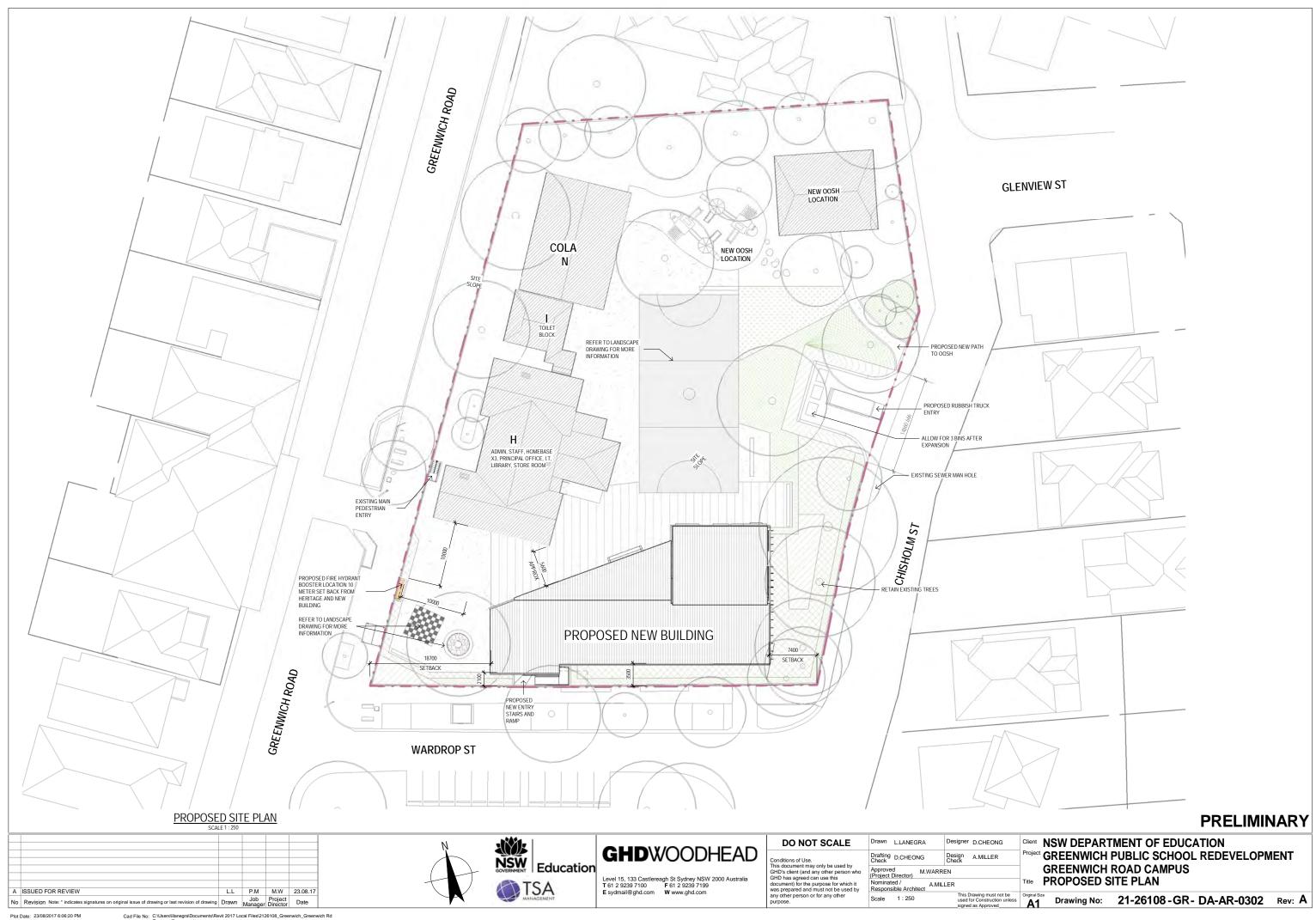
Level 15, 133 Castlereagh St Sydney NSW 2000 Australia T 61 2 9239 7100 F 61 2 9239 7199 E sydmail@ghd.com W www.ghd.com

Conditions of Use.
This document may only be used by
GHD's client (and any other person who
GHD has agreed can use this
document) for the purpose for which it
was prepared and must not be used by
any other person or for any other

DO NOT SCALE

Drawn L.LANEGRA	Designer D.CHEONG	
Drafting D.CHEONG	Design A.MILLER Check	Pro
Approved M.WARREN (Project Director)		
Nominated / A.MIL Responsible Architect	LER	Titl

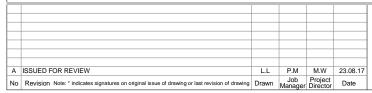

Scale As indicated


Illerit NSW DEPARTMENT OF EDUCATION
Troject GREENWICH PUBLIC SCHOOL REDEVELOPMENT
GREENWICH ROAD CAMPUS
NOTIFICATION DRAWING

Drawing No: 21-26108 - GR - DA-AR-0050 Rev: A

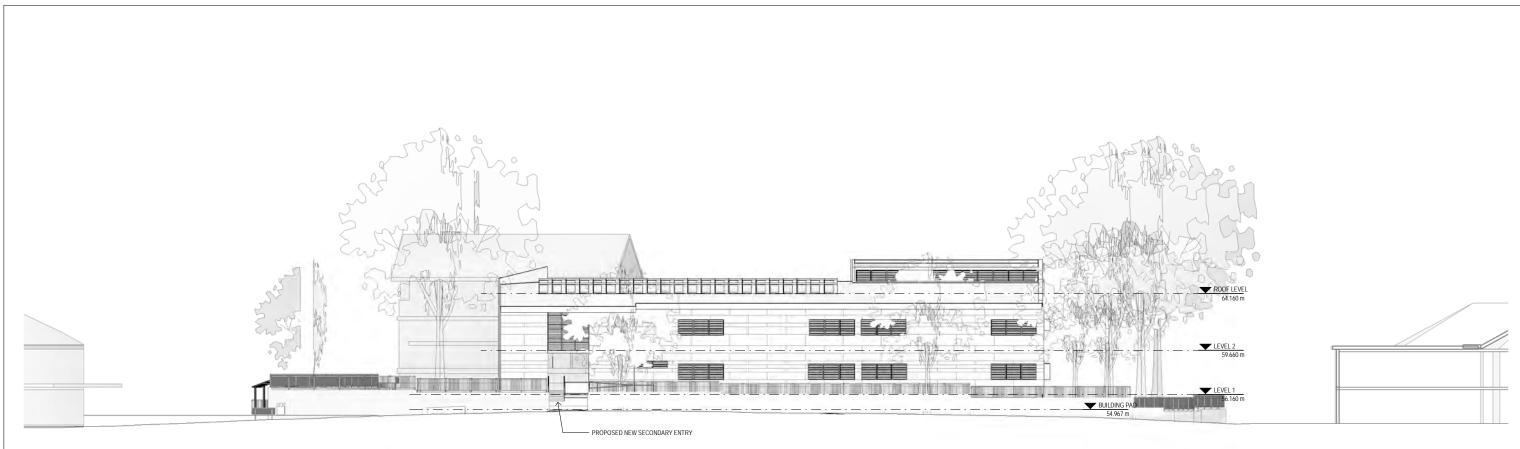
Plot Date: 23/08/2017 6:05:37 PM

Cad File No: C:\Users\lilanegra\Documents\Revit 2017 Local Files\2126108_Greenwich_Greenwich Rd Campus_lilanegra.rvt



VIEW FROM WARDROP AND CHISHOLM ST

PRELIMINARY



GHDWOODHEAD

NOT SCALE	Drawn L.LANEGRA	Designer D.CHEON
of Use.	Drafting D.CHEONG	Design A.MILLER Check
ent may only be used by t (and any other person who areed can use this	Approved M.WARRE	EN
for the purpose for which it ed and must not be used by	Nominated / A.MILI Responsible Architect	_ER
erson or for any other	Scale	This Drawing must n

Client NSW DEPARTMENT OF EDUCATION Project GREENWICH PUBLIC SCHOOL REDEVELOPMENT GREENWICH ROAD CAMPUS Title PHOTOMONTAGE Original Size Projecting No. 21-26108 - GP - DA-AP-0500 - Pour A				
Ī	Original Size	Drawing No:	21-26108-GR- DA-AR-0500	Rev: A

ELEVATION FROM WARDROP ST SCALE 1:150

ELEVATION FROM CHISHOLM ST SCALE 1:150

PRELIMINARY

0 2000 4000 6000 8000 10000mm SCALE 1: 200 AT ORIGINAL SIZE

GHDWOODHEAD

Level 15, 133 Castlereagh St Sydney NSW 2000 Australia T 61 2 9239 7100 F 61 2 9239 7199 E sydmail@ghd.com W www.ghd.com

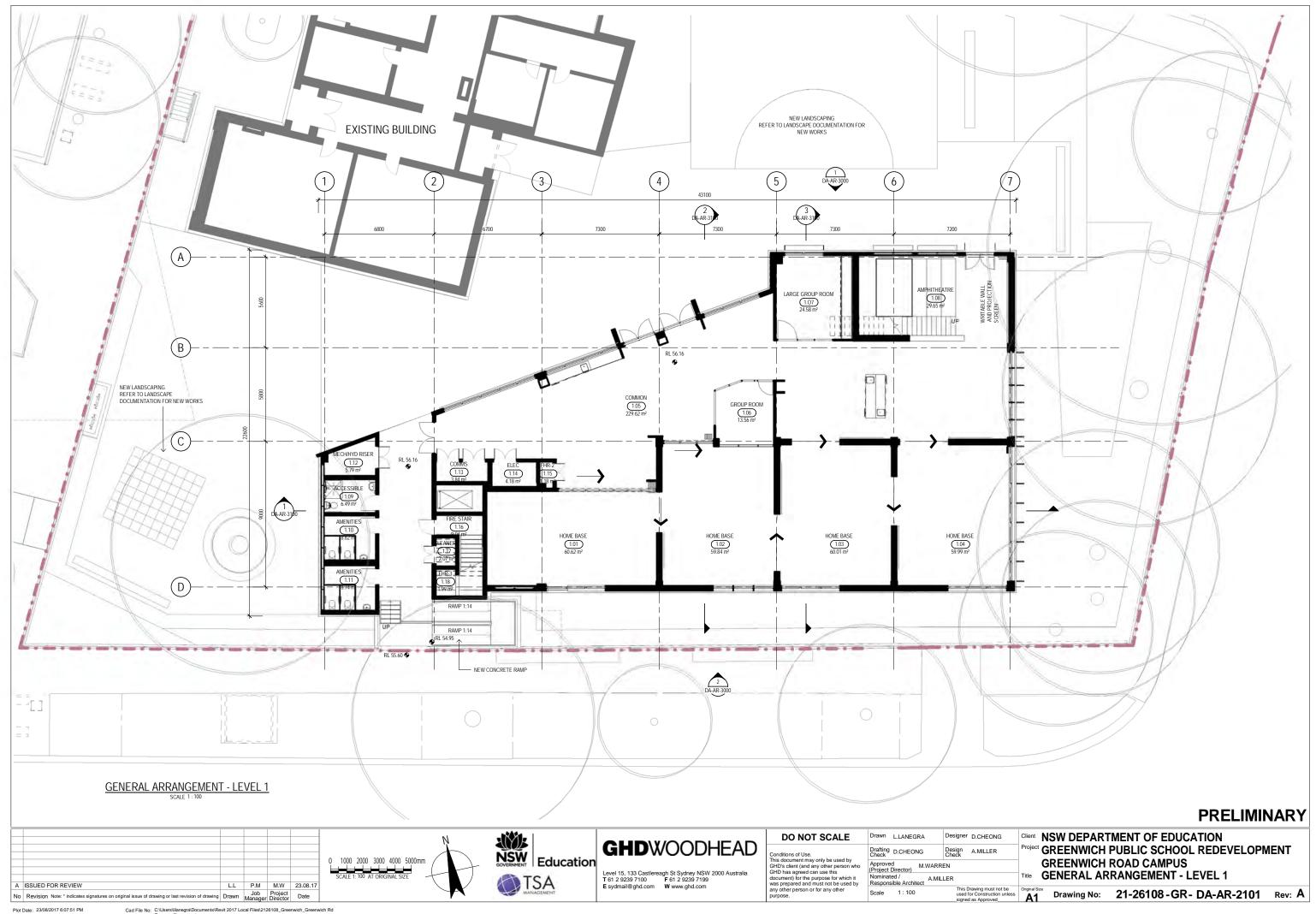
DO NOT SCALE	Drawn
Conditions of Use. This document may only be used by GHD's client (and any other person who GHD has agreed can use this document) for the purpose for which it was prepared and must not be used by	Drafting Check
	Approve (Project
	Nomina Respon
any other person or for any other	Scale

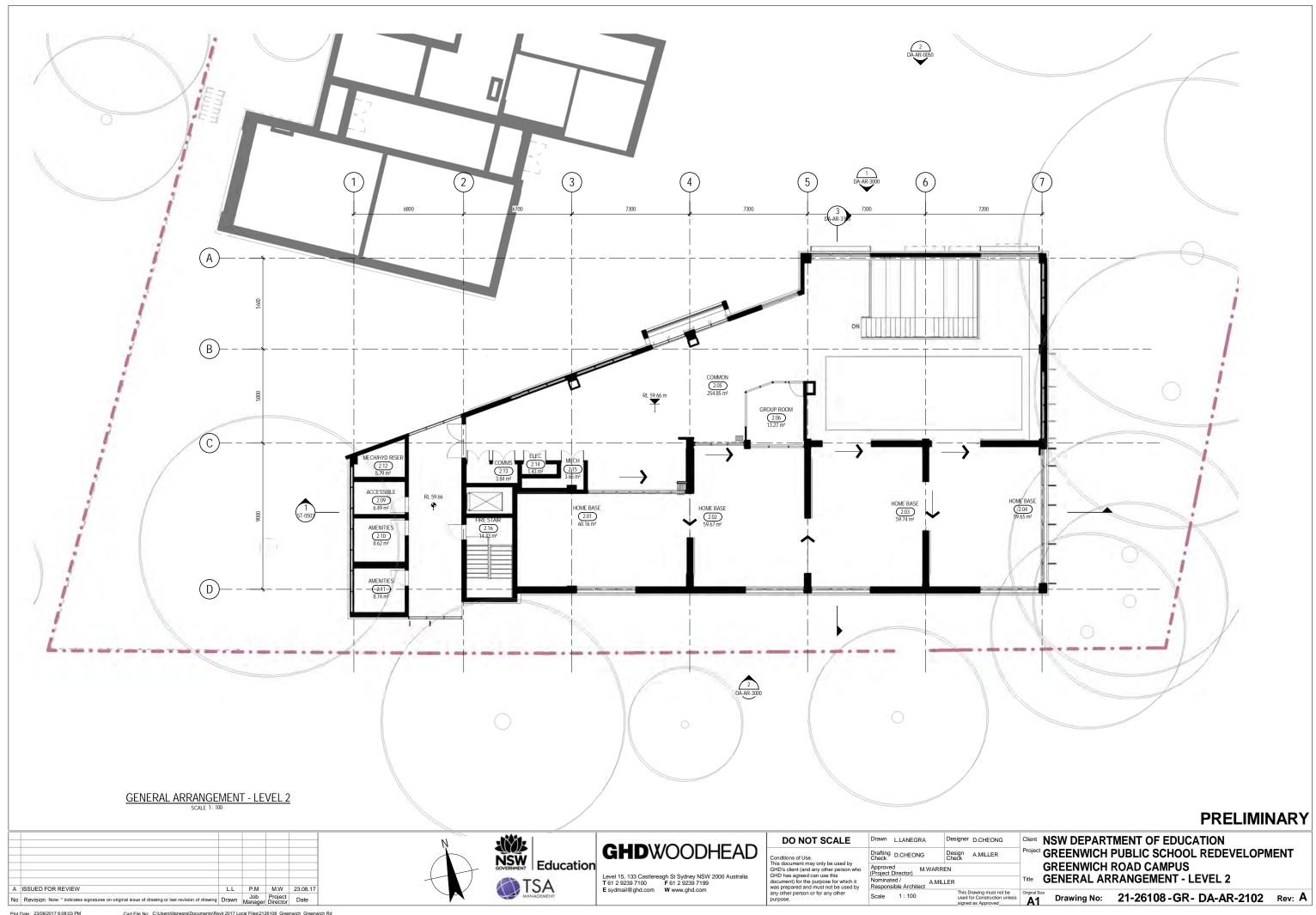
	Drawn L.LANEGRA	Designer D.CHEONG	CI
	Drafting D.CHEONG	Design A.MILLER Check	Pr
who	Approved M.WARRI (Project Director)	EN	
it by	Nominated / A.MIL Responsible Architect	LER	Ti

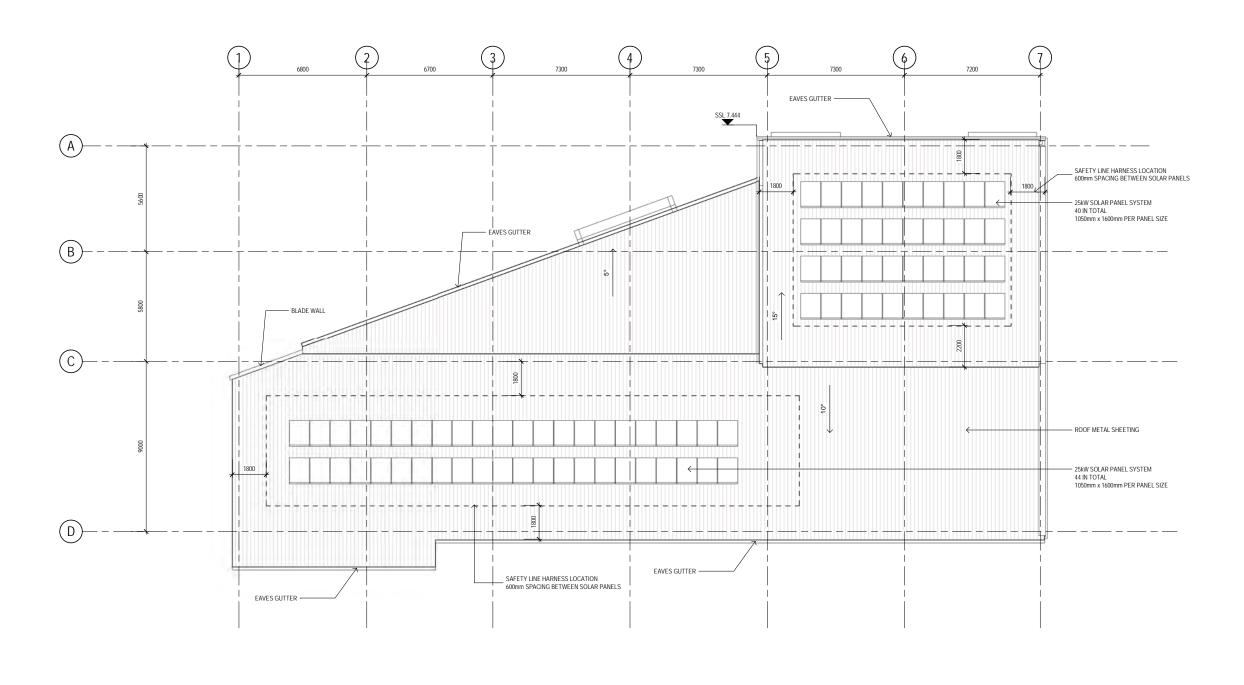
Client NSW DEPARTMENT OF EDUCATION
Project GREENWICH PUBLIC SCHOOL REDEVELOPMENT
GREENWICH ROAD CAMPUS
TITLE SITE ELEVATIONS STREETSCAPE

Drawing No: 21-26108 - GR - DA-AR-1010 Rev: A

2000 4000 6000 8000 10000mn


GHDWOODHEAD


Level 15, 133 Castlereagh St Sydney NSW 2000 Australia T 61 2 9239 7100 F 61 2 9239 7199 E sydmail@ghd.com W www.ghd.com

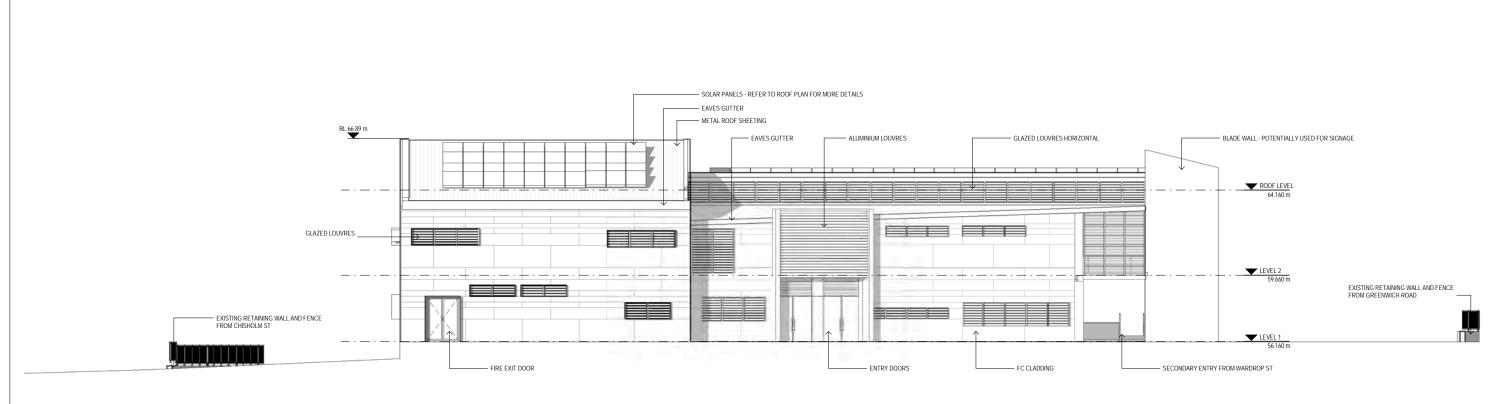

DO NOT SCALE	Drawn	L.LANEGRA	1	Designer	D.CHEONG	
Conditions of Use.	Drafting Check	D.CHEONG	I	Design Check	A.MILLER	
This document may only be used by GHD's client (and any other person who GHD has agreed can use this document) for the purpose for which it	Approve (Project Nominat	Director) IVI.V ed /	VARRE A.MILL			
was prepared and must not be used by	Respons	sible Architect		This D	Prawing must not be	H
any other person or for any other purpose.	Scale	1 : 150		used f	or Construction unless	Ľ

Cient NSW DEPARTMENT OF EDUCATION
Project GREENWICH PUBLIC SCHOOL REDEVELOPMENT
GREENWICH ROAD CAMPUS
Title SITE ELEVATIONS STREETSCAPE

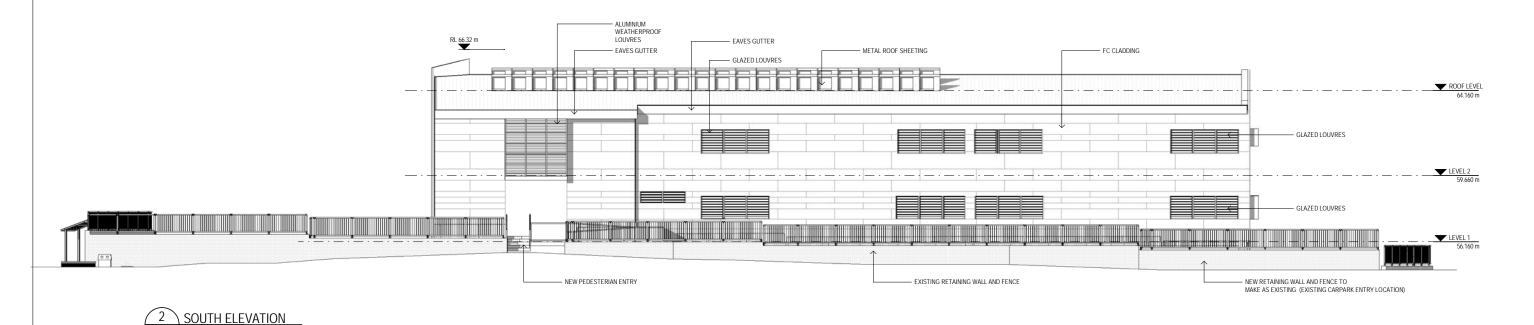
Drawing No: 21-26108 - GR - DA-AR-1011 Rev: A

LEVEL 3 FCL SCALE 1: 100

PRELIMINARY



GHDWOODHEAD

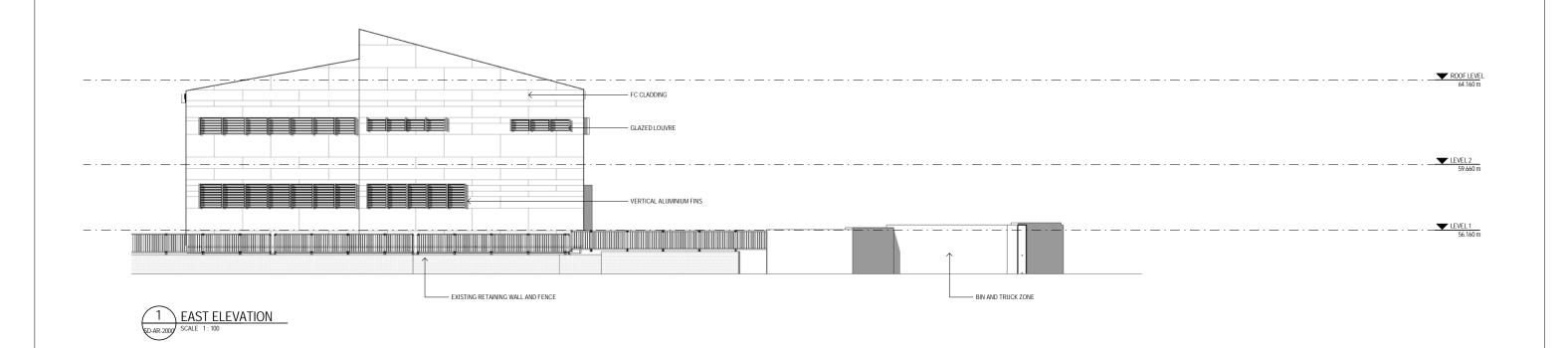

Level 15, 133 Castlereagh St Sydney NSW 2000 Australia T 61 2 9239 7100 F 61 2 9239 7199 E sydmail@ghd.com W www.ghd.com

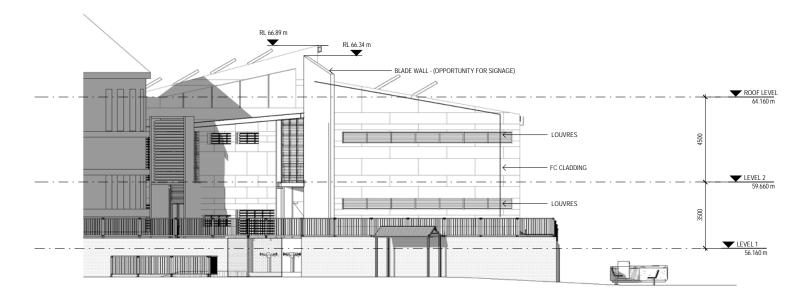
	DO NOT SCALE	Drawn	L.LANEGRA		Designer	D.CHEONG
	onditions of Use.	Drafting Check	D.CHEONG		Design Check	A.MILLER
G	his document may only be used by HD's client (and any other person who HD has agreed can use this	Approved M.WARRI			EN	
d	ocument) for the purpose for which it as prepared and must not be used by	Nominat Respons	ed / sible Architect	A.MIL	LER	
	ny other person or for any other urpose.	Scale	1:100		used	Drawing must not be for Construction unle d as Approved

Client NSW DEPARTMENT OF EDUCATION
Project GREENWICH PUBLIC SCHOOL REDEVELOPMENT
GREENWICH ROAD CAMPUS
Title GENERAL ARRANGEMENT - ROOF

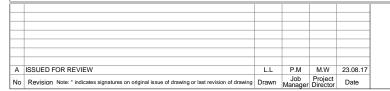
No	Revision Note: * indicates signatures on original issue of drawing or last revision of drawing	Drawn	Job Manager	Project	Date
Α	ISSUED FOR REVIEW	L.L	P.W	M.W	23.08.17

NSW COVERNMENT Education 1000 2000 3000 4000 5000mm TSA MANAGEMENT


GHDWOODHEAD

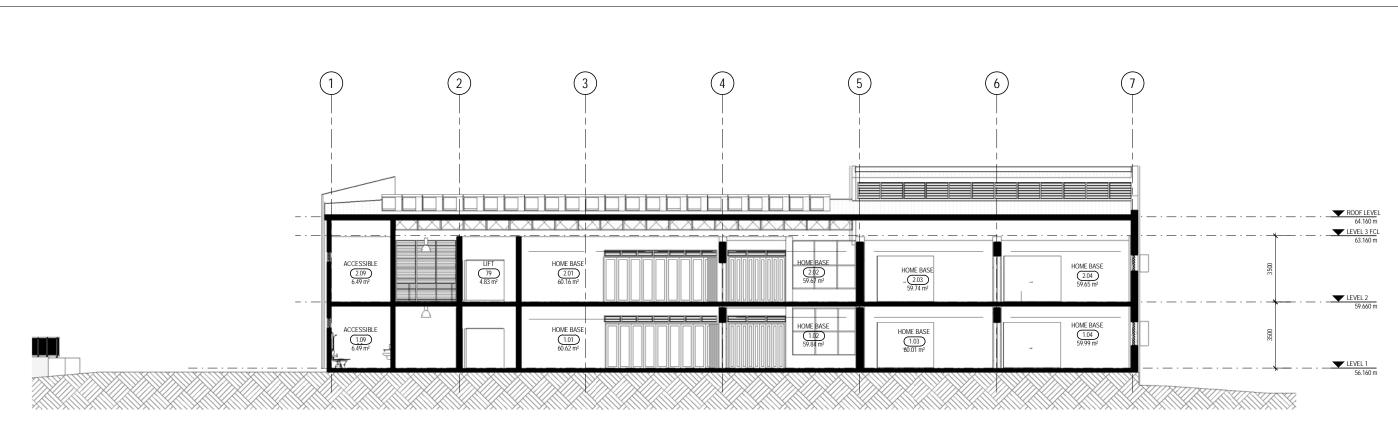

onditions of Use. Conditions of Use.
This document may only be used by
GHD's client (and any other person who
GHD has agreed can use this
document) for the purpose for which it
was prepared and must not be used by
any other person or for any other
purpose.

DO NOT SCALE


Drawn L.LANEGRA Designer D.CHEONG Drafting D.CHEONG Design A.MILLER Project Director) Nominated / A.MILLER Responsible Architect Scale 1:100

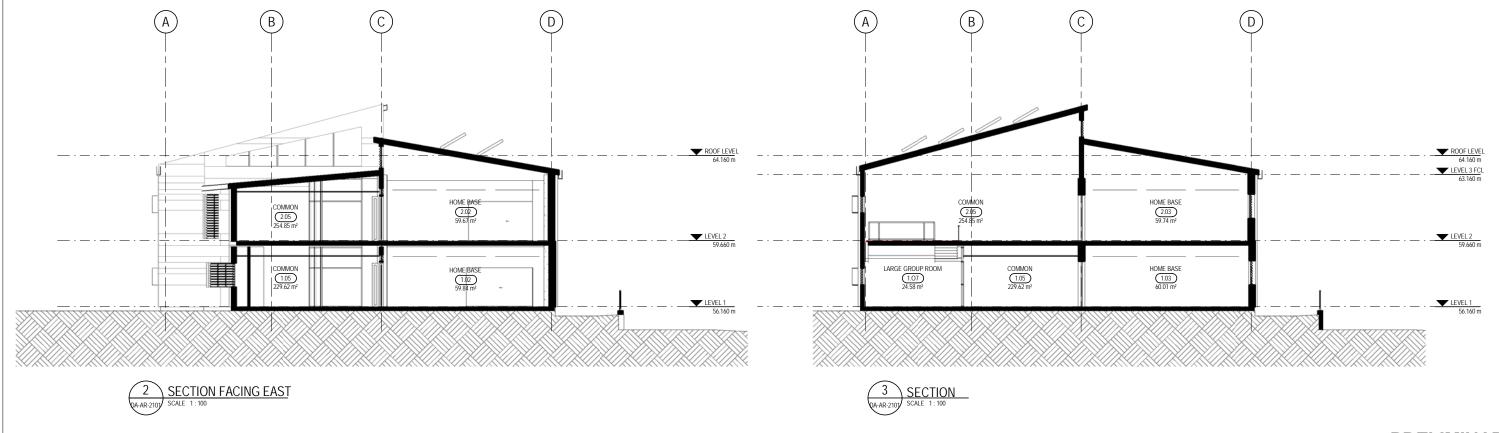
Client NSW DEPARTMENT OF EDUCATION ^{ct} GREENWICH PUBLIC SCHOOL REDEVELOPMENT **GREENWICH ROAD CAMPUS** ITILE NORTH & SOUTH ELEVATIONS

O 1000 2000 3000 4000 5000mm



GHDWOODHEAD

Level 15, 133 Castlereagh St Sydney NSW 2000 Australia T 61 2 9239 7100 F 61 2 9239 7199 E sydmail@ghd.com W www.ghd.com


DO NOT SCALE	Drawn L.LANEGRA	Designer D.CHEONG
Conditions of Use.	Drafting D.CHEONG	Design A.MILLER
This document may only be used by GHD's client (and any other person who GHD has agreed can use this	Approved M.WARR (Project Director)	EN
document) for the purpose for which it was prepared and must not be used by	Nominated / A.MIL Responsible Architect	LER
any other person or for any other purpose.	Scale 1:100	This Drawing must not be used for Construction unless signed as Approved

Client NSW DEPARTMENT OF EDUCATION
Project GREENWICH PUBLIC SCHOOL REDEVELOPMENT GREENWICH ROAD CAMPUS EAST AND WEST ELEVATIONS

SECTION FACING NORTH

NA-AR-2101 SCALE 1:100

PRELIMINARY

GHDWOODHEAD

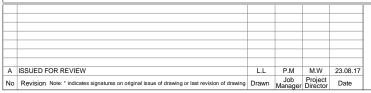
Level 15, 133 Castlereagh St Sydney NSW 2000 Australia T 61 2 9239 7100 F 61 2 9239 7199 E sydmail@ghd.com W www.ghd.com

DO NOT SCALE	Drawn L.LA	NEGRA	Designer	D.CHEONG
Conditions of Use.	Drafting D.CH	HEONG	Design Check	A.MILLER
This document may only be used by GHD's client (and any other person who GHD has agreed can use this	Approved (Project Direct	or) M.WARRI	ΞN	
document) for the purpose for which it was prepared and must not be used by	Nominated / Responsible A	A.MILI	LER	
any other person or for any other purpose.	Scale 1:	100		rawing must not be or Construction unless

Client NSW DEPARTMENT OF EDUCATION
Project GREENWICH PUBLIC SCHOOL REDEVELOPMENT
GREENWICH ROAD CAMPUS
TITLE SECTIONS - SHEET 1

ANODISED STEEL WINDOW FRAMING

CHARCOAL COLOUR


SAFETYLINE JALOUSIE ECO LOUVRE SYSTEM

FIBRE CEMENT EXTERNAL CLADDING SYSTEM

OFFWHITE FIBRE CEMENT PANELS

Level 15, 133 Castlereagh St Sydney NSW 2000 Australia
T 61 2 9239 7100 F 61 2 9239 7199
E sydmail@ghd.com W www.ghd.com

DO NOT SCALE	C
Conditions of Use. This document may only be used by GHD's client (and any other person who GHD has agreed can use this document) for the purpose for which it was prepared and must not be used by any other person or for any other	(F
nurnose	P

	Drawn L.LANEGRA	Designer D.CHEONG	Cli
	Drafting D.CHEONG	Design A.MILLER Check	Pro
who	Approved M.WARR (Project Director)	EN	
it by	Nominated / A.MIL Responsible Architect	LER	Tit
		This Drawing must not be	Orio

nt	NSW DEPARTMENT OF EDUCATION
ect	GREENWICH PUBLIC SCHOOL REDEVELOPMENT
	GREENWICH ROAD CAMPUS
	BUILDING FABRIC FINISHES SCHEDULE

22 DECEMBER 9AM - PROPOSED

22 DECEMBER 12PM - PROPOSED

22 DECEMBER 3PM - PROPOSED

22 JUNE 3PM - PROPOSED

L.L P.M M.W 23.08.17 No Revision Note: * indicates signatures on original issue of drawing or last revision of drawing Drawn Job Manager Director Date

GHDWOODHEAD

Level 15, 133 Castlereagh St Sydney NSW 2000 Australia T 61 2 9239 7100 F 61 2 9239 7199 E sydmail@ghd.com W www.ghd.com

HEONG Client
ILLER
Title
g must not be ostruction unless oproved Original S

NSW DEPARTMENT OF EDUCATION CET GREENWICH PUBLIC SCHOOL REDEVELOPMENT GREENWICH ROAD CAMPUS SITE SHADOW DIAGRAMS

This Drawing must not be used for Construction unless signed as Approved

A1 Drawing No: 21-26108 - GR - DA-AR-9001 Rev: A

22 JUNE 3PM - EXISTING

© JBS&G

This document is and shall remain the property of JBS&G. The document may only be used for the purposes for which it was commissioned and in accordance with the Terms of Engagement for the commission. Unauthorised use of this document in any form whatsoever is prohibited

Document Distribution

Rev No.	Copies	Recipient	Date
Α	1 x Electronic Copy	Pells Sullivan Meynink	31/08/2017

Document Status

Rev No.	Author	Reviewer	Approved for Issue		
		Name	Name	Signature	Date
A	Scott Burrows	Matthew Bennett	DRAFT		31/08/2017

www.jbsg.com.au

16 October 2017

Ian Guthrie Senior Project Manager NSW Department Of Education & Communities 16/207 Kent Street Sydney NSW 2000 Our ref: 2126108-26522 Your ref:

Dear lan,

NSW Schools - North & NW Sydney Greenwich Road Public School Geotechnical and Environmental Investigation

Please see attached the geotechnical and environmental report to support the Development Application for Greenwich Road Public School. As you are aware this school has two sites being Greenwich Road and Kingslangley Road.

This geotechnical report reference PSM331-009R is for the Kingslangley Road Site.

The body of the Report outlining investigations and recommendations is for the geotechnical investigation only at the Kingslangley Road site.

The Environmental Investigation is included in a stand-alone appendix D - JBS&G Contamination Report.

This Report includes the following appendices:

- Appendix A Borehole Logs Table 1 shows only Bore Holes BH4 to BH 14 logs which are at the Kingslangley Road site. (The missing BH1, BH2 and BH3 are at the Greenwich Road site).
- Appendix B Soil Laboratory Tests. The laboratory tests are for all 14 samples from both Greenwich Public School sites and are summarised in Table 1 of the main report. Table 1 references the BH numbers and includes only the sample tests results from this site.

This Kingslangley Road Report shows the laboratory testing for all 14 samples as the laboratory did not reference the separate sites.

The samples below relate to the following bore hole at the Kings Langley Road site.

- G04 BH04
- G05 BH05
- G06 BH06
- G07 BH07
- G08 BH08
- G09 BH09
- G10 BH10
- G11 BH11
- G12 BH12

- G13 BH13
- G14 BH14
- Appendix C Kingslangley Road Site Photos are site specific relating to the Report.
- Appendix D Kingslangley Road is the JBS&G Contamination report

This final Appendix D is a separate stand-alone Contamination Report which deals with both Greenwich Road and Kingslangley Road sites. The JBS&G Report from executive summary to Conclusions clearly differentiates the two sites by headings to enable the reader to be aware of the site being described.

The appendices of this separate Contamination Report Appendix D are also included and deal with the sites as follows:

- Appendix A is summary tables and references results by the Bore Hole number
- Appendix B photos are clearly described per site
- Appendix C bore logs references results by the Bore Hole number and site address.
- Appendix D shows historical photographs clearly indicting the site in the image.
- Appendix E is the Land Titles of both sites
- Appendix F is the EPA search results which pertains to the area
- Appendix G is the Planning certificates of both sites
- Appendix H is the result of Heritage search for the area
- Appendix I is Calibration record. As the same equipment was used this is relevant to both schools
- Appendix J is the QA results and is relevant to both Schools
- Appendix K. combines the Laboratory tests of both sites but clearly indicates the tests in regard to the Bore Holes. Bore holes BH1, BH2 and BH3 are at the Greenwich Road site. Bore Holes BH4 to BH 14 are at the Kingslangley Road site.
- Appendix L contains the DA plans for both sites.

I hope this clarifies the report sections.

Sincerely

GHD Pty Ltd

Mark Sloane

Architect

61 3 8687 8533